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Rayleigh

Rayleigh solves the magnetohydrodynamic (MHD) equations, in a rotating frame, within spherical shells,
using the anelastic or Boussinesq approximations. Derivatives in Rayleigh are calculated using a spectral
transform scheme. Spherical harmonics are used as basis functions in the horizontal direction. Chebyshev
polynomials are employed in radius. Time-stepping is accomplished using the semi-implicit Crank-Nicolson
method for the linear terms, and the Adams-Bashforth method for the nonlinear terms. Both methods are
second-order in time.

This documentation is structured into the following sections:
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1.1 Getting Started

1.1.1 Accessing Rayleigh

You can download the Rayleigh source code from Rayleigh’s GitHub respository .

1.1.2 Setting up a Rayleigh Development Environment

When running Rayleigh on HPC resources, always compile the software with the recommended compiler
and link against libraries optimized for the architecture you are running on. We provide example instructions
for some common systems at `Installation Instructions for HPC systems`_.

When developing Rayleigh or editing its documentation, however, such optimizations are rarely necessary.
Instead, it is sufficient for the code and documentation to compile. For this purpose, we recommend setting
up a conda environment or using our Docker container. Instructions for setting up an environment on Linux
and Mac OS are provided below.

Conda Environment

First, if you don’t have Conda, you should download and install the version appropriate for your architecture
here.

Once you have Conda installed, create a Conda environment using the environment files we provide in
Rayleigh’s main directory.

conda config --set channel_priority strict
conda env create -f environment.yml
conda activate radev

Because Rayleigh installs a number of different packages the first of these lines simplifies the search for a
compatible selection of package versions. The second line creates a new environment named “radev” and
installs all necessary packages. The third line activates the environment. This command will likely take a
while (a few minutes).

If you want to undo the change to the channel priority setting afterwards, you can run .. code-block:: bash

conda config –set channel_priority flexible

after installing the environment (only necessary if you depend on the more flexible conda solver).

MKL Setup: Linux and Mac

Once your packages are installed, you will most likely want to have the MKLROOT environment variable set
whenever you activate your Conda environment. To do this we set MKLROOT to the location of the currently
activated conda environment from the enviroment variable CONDA_PREFIX.

export MKLROOT="$CONDA_PREFIX"

Note that this is Bash syntax (use setenv if running c-shell). Note that there should be no spaces on either
side of the “=” sign. If you stop here, you will have to do this every time you activate your development en-

4 Chapter 1. User Guide

https://github.com/geodynamics/Rayleigh
https://docs.conda.io/en/latest/miniconda.html


Rayleigh

vironment. To have this happen automatically, you only need to add two small scripts to radev/etc/conda/ac-
tivate.d and radev/etc/conda/deactivate.d directories. Scripts in these directories are automatically executed
when your conda environment is activated and deactivated, respectively.

Change to your activate.d directory (for me, this was /custom/software/mini-
conda3/envs/radev/etc/conda/activate.d) and create a file named activate_mkl.sh with the following
three lines:

#!/bin/bash
export MKLSAVE="$MKLROOT"
export MKLROOT="$CONDA_PREFIX"

In the deactivate.d directory, create a file named deactivate_mkl.sh with the following two lines:

#!/bin/bash
export MKLROOT="$MKLSAVE"

Now, try it out.

conda deactivate
echo $MKLROOT
conda activate radev
echo $MKLROOT

The MKLSAVE variable is used so that a separate MKL installation on your machine, if one exists, is properly
reset in your environment following deactivation.

Configuration and Compilation

Building the documentation is the same on Linux and Mac.

conda activate radev
cd /path/to/Rayleigh
make doc

Once the documetation builds, you can access it by opening Rayleigh/doc/build/html/index.html in your web
browser.

Building the code is again the same on Linux and Mac. Execute the following:

conda activate radev
cd /path/to/Rayleigh
./configure -conda-mkl --FC=mpifort
make

At this point, you can run “make install,” and run the code using mpirun as you normally would (keep the
radev environment active when doing this).

1.1. Getting Started 5
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Docker Container

Docker provides a standardized way to build, distribute and run containerized environments on Linux, ma-
cOS, and Windows. To get started you should install Docker on your system following the instructions from
here. On Linux you can likely also install it from a distribution package (e.g., docker-io on Debian/Ubuntu).
Podman is an alternative runtime that can run Docker containers and can be used as a drop-in replacement
for Docker. Singularity/Apptainer are other available alternatives that are more commonly used on HPC
systems.

Launching the container

You can launch our pre-built container that is hosted on Docker Hub from a terminal. This container is set
up to get used to Rayleigh not to run productive models with it.

This command will create a terminal inside the container and drop you in a directory that contains a pre-
compiled version of Rayleigh. You can run input examples or tests by executing rayleigh.opt or rayleigh.dbg
and look at the output files, but all files will be deleted when you exit the container.

Note: If you use Apptainer/Singularity instead of docker you can keep the model output files, because
Apptainer by default mounts the current directory into the container. The command to run Rayleigh inside
the container is mpirun -np X apptainer exec geodynamics/rayleigh:latest rayleigh.opt`
(assuming you have a Rayleigh input file in the current directory).

We also provide a container with a development environment for Rayleigh that allows you to change the code,
build the documentation and the code, and to keep model outputs. The following command is for GNU/Linux
and macOS users.

./docker-devel
# This runs the following command:
# docker run -it --rm -v $HOME:/work -e HOSTUID=$UID -e HOSTGID=$GROUPS -e␣
→˓HOSTUSER=$USER geodynamics/rayleigh-devel-jammy:latest

This will give you a shell inside the container and mount your home directory at /work. You can clone,
configure, build, and run the code and analyze the outputs using Python inside the container. Any changes
below /work will be reflected in your home directory. Any other changes to the container will be deleted
once you exit the shell.

Note: Your user has sudo rights within the container. This allows to install packages using the apt command
or modify the system in any other way.

Windows users should run the script docker-devel.bat instead.
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Configuration and Compilation

Note: All these commands are run inside the Docker container and assume you have a copy of Rayleigh at
$HOME/path/to/Rayleigh (which corresponds to /work/path/to/Rayleigh inside the container).

Building the documentation

cd /work/path/to/Rayleigh
make doc

Building the code

cd /work/path/to/Rayleigh
./configure --with-fftw=/usr
make

Updating the container

On the first launch of the container, your local Docker engine will automatically download our pre-built
container from Docker Hub. Subsequent launches will just use this container and will not check for updates.
You can download a newer version of the container using the following command.

docker pull geodynamics/rayleigh-devel-jammy:latest

Building the container

Note: This step purely optional. You only need to do this if you cannot pull the container from Docker Hub
or you want to modify the Dockerfile.

To build the container you have to run this command from your host system (i.e., not from inside the con-
tainer).

cd docker
docker build -t geodynamics/rayleigh-devel-jammy:latest rayleigh-devel-jammy

You can check the newly built container is there using this command.

docker images

1.1. Getting Started 7
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Spack Environment

Spack can be used to create a development environment to build the code in a local directory. First set up
Spack using the instructions in Alternative: Installation using Spack

Afterwards create a new environment, activate it and set the status of the Rayleigh package to development.
We select $PWD as the path, so run this command from the base directory of your git clone.

spack env create rayleigh
spack env activate rayleigh
spack add rayleigh@master
spack develop -p "$PWD" rayleigh@master

A subsequent spack install will install necessary dependencies and build Rayleigh in the selected direc-
tory.

1.1.3 Installing Rayleigh

A detailed explanation of the installation process may be found in the root directory of the code repository
at:

https://github.com/geodynamics/Rayleigh/blob/main/INSTALL.

We provide an abbreviated version of those instructions here.

Third-Party Dependencies

In order to compile Rayleigh, you will need to have MPI (Message Passing Interface) installed along with a
Fortran 2003-compliant compiler. Rayleigh has been successfully compiled with GNU, Intel, IBM, AOCC,
and Cray compilers (PGI has not been tested yet). Rayleigh’s configure script provides native support for the
Intel, GNU, AOCC, and Cray compilers. See Rayleigh/INSTALL for an example of configuration using the
IBM compiler.

Rayleigh depends on the following third party libraries:

1. BLAS (Basic Linear Algebra Subprograms)

2. LAPACK (Linear Algebra PACKage)

3. FFTW 3.x (Fastest Fourier Transform in the West)

You will need to install these libraries before compiling Rayleigh. If you plan to run Rayleigh on Intel
processors, we suggest installing Intel’s Math Kernel Library (MKL) in lieu of installing these libraries
individually. The Math Kernel Library provides optimized versions of BLAS, LAPACK, and FFTW. It has
been tuned, by Intel, for optimal performance on Intel processors. At the time of this writing, MKL is
provided free of charge. You may find it here.
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Compilation

Rayleigh is compiled using the standard Linux installation scheme of configure/make/make-install. From
within the Rayleigh directory, run these commands:

1. ./configure – See Rayleigh/INSTALL or run ./configure –help to see relevant options.

2. make – This produces the code. You can run make -j to build several files in parallel and speed up the
build this way.

3. make install – This places the Rayleigh executables in Rayleigh/bin. If you would like to place them
in (say) /home/my_rayleigh/bin, run configure as: ./configure –prefix=/home/my_rayleigh, i.e., the
executables will be placed in the $(prefix)/bin directory.

For most builds, two executables will be created: rayleigh.opt and rayleigh.dbg. Use them as follows:

1. When running production jobs, use rayleigh.opt.
2. If you encounter an unexpected crash and would like to report the error, rerun the job with

rayleigh.dbg. This version of the code is compiled with debugging symbols. It will (usually) pro-
duce meaningful error messages in place of the gibberish that is output when rayleigh.opt crashes.

If configure detects the Intel compiler, you will be presented with a number of choices for the vectorization
option. If you select all, rayleigh.opt will not be created. Instead, rayleigh.sse, rayleigh.avx, etc. will be
placed in Rayleigh/bin. This is useful if running on a machine with heterogeneous node architectures (e.g.,
Pleiades). If you are not running on such a machine, pick the appropriate vectorization level, and rayleigh.opt
will be compiled using that vectorization level.

The default behavior of the make command is to build both the optimized, rayleigh.opt, and the debug
versions, rayleigh.dbg. As described above, if Intel is used and all is selected, every version will be compiled.
To build only a single version, the target=<target> option may be used at the make stage, for example:

1. make target=opt - build only the optimized version, rayleigh.opt
2. make target=dbg - build only the debug version, rayleigh.dbg
3. make target=avx - build only the AVX version, rayleigh.avx

When building a single target, the final name of the executable can be changed with the output=<output> op-
tion during the make install command. For example, to build the optimized version and name the executable
a.out:

1. make target=opt - only build the optimized version

2. make target=opt output=a.out install - install the optimized version as a.out
Inspection of the $(prefix)/bin directory (specified at configure time with the -prefix option) will show a new
file named a.out.
If both the optimized version and the debug version have already been built, they can be renamed at install
time as:

1. make - build both optimized and debug version (or all versions)

2. make target=opt output=a.out.opt install - install and rename the optimized version

3. make target=dbg output=a.out.dbg install - install and rename the debug version

The output option is only respected when a particular target is specified. Running make output=a.out
install will install all rayleigh.* executables, they will not be renamed.
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Alternative: Installation using Spack

Spack is a package management tool designed to support multiple versions and configurations of software
on a wide variety of platforms and environments. It can be used to build Rayleigh with different compilers
and a custom set of libraries for MPI, LAPACK, and FFTW. It can automatically build dependencies itself
or use those provided by the HPC environment.

To set up Spack in your environment follow the instructions in the documentation. Add local compilers and
packages as desired.

The next step has only to be performed once to add the Rayleigh package repository. Run this from the base
directory of the Rayleigh repository.

spack repo add spack-repo

Afterwards you can just install Rayleigh and its dependencies using:

spack install rayleigh

Once the build succeeded the package can be loaded using the following command, which will make the
rayleigh.opt and rayleigh.dbg executables available in the PATH and can be run to start simulations as
usual.

spack load rayleigh

There are many ways in which to modify the compiler and dependencies being used. They can be found in
the Spack documentation.

As an example you can install Rayleigh using MKL for LAPACK and FFTW using:

spack install rayleigh ^intel-mkl

To see the dependencies being installed you can use:

spack spec rayleigh ^intel-mkl

1.1.4 Installation on HPC systems

Given the amount of computational resources required to simulate convection in highly turbulent param-
eter regimes, many users will want to run Rayleigh in a HPC environment. Here we provide instructions
for compilation on two widely-used, national-scale supercomputing systems: TACC Stampede2 and NASA
Pleiades.

Example jobscripts containing the necessary commands to compile and run Rayleigh on various systems
may be found in Rayleigh/job_scripts/.
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TACC Stampede2

Installing Rayleigh on NSF’s Stampede 2 system is straightforward. At the time this documentation is written
(Sep 2022) the loaded default modules work out of the box for Rayleigh. In case the modules change in the
future here is a listed for reference:

1) intel/18.0.2 3) impi/18.0.2 5) autotools/1.1 7) cmake/3.20.2 9)␣
→˓TACC
2) libfabric/1.7.0 4) git/2.24.1 6) python2/2.7.15 8) xalt/2.10.37

After cloning a Rayleigh repository, rayleigh can be configured and compiled as:

FC=mpifc CC=mpicc ./configure # select 'AVX512'
make -j
make install

We suggest choosing ‘AVX512’ at the configure menu. This vectorization is supported by both the Sky-
lake and Ice Lake nodes available on Stampede2. An example jobscript for Stampede2 may be found in
Rayleigh/job_scripts/TACC_Stampede2.

NASA Pleiades

Installation on NASA’s Pleiades cluster is similarly straightforward. After cloning the repository, Rayleigh
can be configured and compiled via the following commands:

module purge
module load comp-intel
module load mpi-hpe
./configure --FC=mpif90 --CC=icc # select 'ALL'
make -j
make install

We suggest using the default Intel and MPI compilers provided by Pleiades as in the example above. As of
December, 2022, this corresponded to the following version combination:

1) comp-intel/2020.4.304 2) mpi-hpe/mpt.2.25

Note that Pleiades is a heterogeneous cluster, composed of many (primarily Intel) processor types. We
suggest selecting the ‘ALL’ option when configuring Rayleigh to ensure that a unique executable is cre-
ated for each of the possible vectorization options. An example jobscript for Pleiades may be found in
Rayleigh/job_scripts/NASA_Pleiades.

1.1. Getting Started 11
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1.1.5 Verifying Your Installation

Rayleigh has been programmed with internal testing suite so that its results may be compared against bench-
marks described in Christensen et al. (2001) [CAC+01] and Jones et al. (2011) [JBB+11]

We recommend running a benchmark whenever running Rayleigh on a new machine for the first time, or after
recompiling the code. The Christensen et al. (2001) [CAC+01] reference describes two Boussinesq tests that
Rayleigh’s results may be compared against. The Jones et al. (2011) [JBB+11] reference describes anelastic
tests. Rayleigh has been tested successfully against two benchmarks from each of these papers. Input files
for these different tests are enumerated in Table table_benchmark below. In addition to the input files listed
in Table table_benchmark, input examples appropriate for use as a template for new runs are provided with
the _input suffix (as opposed to the minimal suffix. These input files still have benchmark_mode active. Be
sure to turn this flag off if not running a benchmark.

Important: If you are not running a benchmark, but only wish to modify an existing benchmark-input file,
delete the line containing the text “benchmark_mode=X.” When benchmark mode is active, custom inputs,
such as Rayleigh number, are overridden and reset to their benchmark-appropriate values. For example, set-
ting benchmark_mode = 1 defines the appropriate Case 0 Christensen et al. (2001) [CAC+01] initial con-
ditions. A benchmark report is written every 5000 time steps by setting benchmark_report_interval =
5000. The benchmark reports are text files found within directory path_to_my_sim/Benchmark_Reports/
and numbered according to the appropriate time step. The | benchmark_integration_interval variable
sets the interval at which measurements are taken to calculate the values reported in the benchmark reports.

We suggest using the c2001_case0_minimal input file for installation verification. Algorithmically, there
is little difference between the MHD, non-MHD, Boussinesq, and anelastic modes of Rayleigh. As a result,
when installing the code on a new machine, it is normally sufficient to run the cheapest benchmark, case 0
from Christensen 2001 [CAC+01].

To run this benchmark, create a directory from within which to run your benchmark, and follow along with
the commands below. Modify the directory structure a each step as appropriate:

1. mkdir path_to_my_sim

2. cd path_to_my_sim

3. cp path_to_rayleigh/Rayleigh/input_examples/c2001_case0_minimal main_input

4. cp path_to_rayleigh/Rayleigh/bin/rayleigh.opt rayleigh.opt (or use ln -s in lieu of cp)

5. mpiexec -np N ./rayleigh.opt -nprow X -npcol Y -nr R -ntheta T
For the value N, select the number of cores you wish to run with. For this short test, 32 cores is more than
sufficient. Even with only four cores, the lower-resolution test suggested below will only take around half an
hour. The values X and Y are integers that describe the process grid. They should both be at least 2, and
must satisfy the expression

𝑁 = 𝑋 × 𝑌.

Some suggested combinations are {N,X,Y} = {32,4,8}, {16,4,4}, {8,2,4}, {4,2,2}. The values R and T
denote the number of radial and latitudinal collocation points respectively. Select either {R,T}={48,64} or
{R,T}={64,96}. The lower-resolution case takes about 3 minutes to run on 32 Intel Haswell cores. The
higher-resolution case takes about 12 minutes to run on 32 Intel Haswell cores.

Once your simulation has run, examine the file path_to_my_sim/Benchmark_Reports/00025000. You should
see output similar to that presented in Tables table_benchmark_low or table_benchmark_high . Your numbers
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may differ slightly, but all values should have a % difference of less than 1. If this condition is satisfied, your
installation is working correctly.

Benchmark Low
Rayleigh benchmark report for Christensen et al. (2001) [CAC+01] case 0 when run with nr=48 and
ntheta=64. Run time was approximately 3 minutes when run on 32 Intel Haswell cores.

Run command:

mpiexec -np 32 ./rayleigh.opt -nprow 4 -npcol 8 -nr 48 -ntheta 64

Observable Measured Suggested % Difference Std. Dev.
Kinetic Energy 58.347827 58.348000 -0.000297 0.000000
Temperature 0.427416 0.428120 -0.164525 0.000090
Vphi -10.118053 -10.157100 -0.384434 0.012386
Drift Frequency 0.183272 0.182400 0.477962 0.007073

Benchmark High
Rayleigh benchmark report for Christensen et al. (2001) [CAC+01] case 0 when run with nr=64 and
ntheta=96. Run time was approximately 12 minutes when run on 32 Intel Haswell cores.

Run command:

mpiexec -np 32 ./rayleigh.opt -nprow 4 -npcol 8 -nr 64 -ntheta 96

Observable Measured Suggested % Difference Std. Dev.
Kinetic Energy 58.347829 58.348000 -0.000294 0.000000
Temperature 0.427786 0.428120 -0.077927 0.000043
Vphi -10.140183 -10.157100 -0.166551 0.005891
Drift Frequency 0.182276 0.182400 -0.067994 0.004877

1.1.6 Available Benchmarks

Benchmark
Benchmark-input examples useful for verifying Rayleigh’s installation. Those from Christensen et al. (2001)
[CAC+01] are Boussinesq. Those from Jones et al. (2011) [JBB+11] are anelastic. Examples are found in
the directory: Rayleigh/input_examples/

Paper Benchmark Input File Specify in the main_input file
Christensen et al. Case 0 c2001_case0_minimal benchmark_mode = 1
Christensen et al. Case 1(MHD) c2001_case1_minimal benchmark_mode = 2
Jones et al. 2011 Steady Hydro j2011_steady_hydro_minimal benchmark_mode = 3
Jones et al. 2011 Steady MHD j2011_steady_MHD_minimal benchmark_mode = 4
Breuer et al. 2010 Case 0 b2010_case0_*T_input

Standard benchmarks that generate minimal output files are discussed in the next four benchmarks:

1.1. Getting Started 13
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• Boussinesq non-MHD Benchmark: c2001_case0_minimal

• Boussinesq MHD Benchmark: c2001_case1_minimal

• Steady Anelastic non-MHD Benchmark: j2011_steady_hydro_minimal

• Steady Anelastic MHD Benchmark: j2011_steady_mhd_minimal

• Steady Thermal-Chemical Boussinesq Convection Benchmark: b2010_case0_*T_input

Boussinesq non-MHD Benchmark: c2001_case0_minimal

This is the standard benchmark test when running Rayleigh on a new machine. Christensen et al. (2001)
[CAC+01] describes two Boussinesq tests that Rayleigh’s results may be compared against. Case 0 in Chris-
tensen et al. (2001) [CAC+01] solves for Boussinesq (non-dimensional) non-magnetic convection, and we
will discuss the input parameters necessary to set up this benchmark in Rayleigh below. Rayleigh’s input
parameters are grouped in so-called namelists, which are subcategories of related input parameters that will
be read upon program start and assigned to Fortran variables with identical names. Below are the first four
Fortran namelists in the input file c2001_case0_minimal.

&problemsize_namelist
n_r = 64
n_theta = 96
nprow = 16
npcol = 32
/
&numerical_controls_namelist
/
&physical_controls_namelist
benchmark_mode = 1
benchmark_integration_interval = 100
benchmark_report_interval = 5000
/
&temporal_controls_namelist
max_iterations = 25000
checkpoint_interval = 100000
quicksave_interval = 10000
num_quicksaves = 2
/

Boussinesq MHD Benchmark: c2001_case1_minimal

The MHD Boussinesq benchmark with an insulating inner core of Christensen et al. (2001) [CAC+01]
is denoted as Case 1 and is specified with input file c2001_case1_minimal. Only the namelists modified
compared to Case 0 (Boussinesq non-MHD Benchmark: c2001_case0_minimal above) are shown below.

&physical_controls_namelist
benchmark_mode = 2
benchmark_integration_interval = 100

(continues on next page)
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(continued from previous page)

benchmark_report_interval = 10000
/
&temporal_controls_namelist
max_iterations = 150000
checkpoint_interval = 100000
quicksave_interval = 10000
num_quicksaves = 2
/

Steady Anelastic non-MHD Benchmark: j2011_steady_hydro_minimal

Jones et al. (2011) describes a benchmark for an anelastic hydrodynamic solution that is steady in a drifting
frame. This benchmark is specified for Rayleigh with input file j2011_steady_hydro_minimal. Below are
the relevant Fortran namelists.

&problemsize_namelist
n_r = 128
n_theta = 192
nprow = 32
npcol = 16
/
&numerical_controls_namelist
/
&physical_controls_namelist
benchmark_mode = 3
benchmark_integration_interval = 100
benchmark_report_interval = 10000
/
&temporal_controls_namelist
max_iterations = 200000
checkpoint_interval = 100000
quicksave_interval = 10000
num_quicksaves = 2
/

Steady Anelastic MHD Benchmark: j2011_steady_mhd_minimal

The anelastic MHD benchmark described in Jones et al. (2011) can be run with main input file
j2011_steady_mhd_minimal. The Fortran namelists differing from the Jones et al. (2011) anelastic hy-
dro benchmark (§:ref:cookbookHydroAnelastic above) are shown here.

&physical_controls_namelist
benchmark_mode = 4
benchmark_integration_interval = 100

(continues on next page)
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(continued from previous page)

benchmark_report_interval = 10000
/
&temporal_controls_namelist
max_iterations = 5000000
checkpoint_interval = 100000
quicksave_interval = 25000
num_quicksaves = 2
/

Steady Thermal-Chemical Boussinesq Convection Benchmark: b2010_case0_*T_input

This is a Boussinesq convection benchmark described in Breuer et al. (2010) [BMW+10] in a dual buoyancy
system that allows both thermal and chemical buoyancy sources. The case 0 contains three input lists that
describes varying contributions of thermal vs chemical Rayleigh numbers whereas the total Rayleigh number
stays the same. This benchmark is specified for Rayleigh with input file b2010_case0_*T_input. Below is
an example for 80% thermal and 20% chemical convection scene for the relevant Fortran namelists:

&problemsize_namelist
n_r = 128
n_theta = 192
nprow = 32
npcol = 16
&Reference_Namelist
Ekman_Number = 1.0d-3
Rayleigh_Number = 4.8d4
Prandtl_Number = 3.0d-1
chi_a_Rayleigh_Number = -1.2d5
chi_a_Prandtl_Number = 3.0d0
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1.2 Underlying Physics

Rayleigh solves the MHD equations in spherical geometry under the Boussinesq and anelastic approxima-
tions. This section will provide a basic overview of those equations as well as the mathematical approach
Rayleigh uses to solve them.

1.2.1 Notation and Conventions

Vector and Tensor Notation

All vector quantities are represented in bold italics. Components of a vector are indicated in non-bold italics,
along with a subscript indicating the direction associated with that component. Unit vectors are written in
lower-case, bold math font and are indicated by the use of a hat character. For example, a vector quantity 𝑎
would represented as

𝑎 = 𝑎𝑟𝑎̂ + 𝑎𝜃𝜃 + 𝑎𝜑𝜑. (1.1)

The symbols (𝑟, 𝜃, 𝜑) indicate the unit vectors in the (𝑟,𝜃,𝜑) directions, and (𝑎𝑟, 𝑎𝜃, 𝑎𝜑) indicate the com-
ponents of 𝑎 along those directions respectively.

Vectors may be written in lower case, as with the velocity field 𝑣, or in upper case as with the magnetic
field 𝐵. Tensors are indicated by bold, upper-case, script font, as with the viscous stress tensor 𝒟. Tensor
components are indicated in non-bold, and with directional subscripts (i.e., 𝒟𝑟𝜃).

Reference-State Values

The hat notation is also used to indicate reference-state quantities. These quantities are scalar, and they
are not written in bold font. They vary only in radius and have no 𝜃-dependence or 𝜑-dependence. The
reference-state density is indicated by 𝜌 and the reference-state temperature by 𝑇 , for instance.

Averaged and Fluctuating Values

Most of the output variables have been decomposed into a zonally-averaged value, and a fluctuation about
that average. The average is indicated by an overbar, such that

𝑎 ≡ 1

2𝜋

∫︁ 2𝜋

0
𝑎(𝑟, 𝜃, 𝜑) d𝜑. (1.2)

Fluctations about that average are indicated by a prime superscript, such that

𝑎′(𝑟, 𝜃, 𝜑) ≡ 𝑎(𝑟, 𝜃, 𝜑) − 𝑎(𝑟, 𝜃) (1.3)

Finally, some quantities are averaged over the full sphere. These are indicated by a double-zero subscript
(i.e. ℓ = 0, 𝑚 = 0), such that

𝑎00 ≡
1

4𝜋

∫︁ 2𝜋

0

∫︁ 𝜋

0
𝑎(𝑟, 𝜃, 𝜑) 𝑟sin 𝜃d𝜃d𝜑. (1.4)
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1.2.2 The System of Equations Solved in Rayleigh

Rayleigh solves the Boussinesq or anelastic MHD equations in spherical geometry. Both the equations that
Rayleigh solves and its diagnostics can be formulated either dimensionally or nondimensionally. A nondi-
mensional Boussinesq formulation, as well as dimensional and nondimensional anelastic formulations (based
on a polytropic reference state) are provided as part of Rayleigh. The user may employ alternative formula-
tions via the custom Reference-state interface. To do so, they must specify the functions f𝑖 and the constants
𝑐𝑖 in Equations (1.5)-(1.11) at input time (in development).

The general form of the momentum equation solved by Rayleigh is given by

f1(𝑟)

[︂
𝜕𝑣

𝜕𝑡
+ 𝑣 ·∇𝑣 + 𝑐1𝑧 × 𝑣

]︂
= 𝑐2 f2(𝑟)Θ 𝑟 − 𝑐3 f1(𝑟)∇

(︂
𝑃

f1(𝑟)

)︂
+ 𝑐4 (∇×𝐵) ×𝐵 + 𝑐5∇ ·𝒟,

(1.5)

where the stress tensor 𝒟 is given by

𝒟𝑖𝑗 = 2f1(𝑟) f3(𝑟)

[︂
𝑒𝑖𝑗 −

1

3
(∇ · 𝑣) 𝛿𝑖𝑗

]︂
. (1.6)

Here 𝑒𝑖𝑗 and 𝛿𝑖𝑗 refer to the standard rate-of-strain tensor and Kronecker delta, respectively.

The velocity field is denoted by 𝑣, the thermal anomoly by Θ, the pressure by 𝑃 , and the magnetic field by
𝐵. All four of these quantities (eight, if you count the three components each for 𝑣 and 𝐵) are 3-dimensional
functions of position, in contrast to the 1-dimensional functions of radius f𝑖(𝑟). The velocity and magnetic
fields are subject to the constraints

∇ · [f1(𝑟)𝑣] = 0 (1.7)

and

∇ ·𝐵 = 0, (1.8)

respectively. The evolution of Θ is described by

f1(𝑟) f4(𝑟)

[︂
𝜕Θ

𝜕𝑡
+ 𝑣 ·∇Θ + 𝑐11 f14(𝑟)𝑣𝑟

]︂
= 𝑐6∇ · [f1(𝑟) f4(𝑟) f5(𝑟)∇Θ]

+ 𝑐10 f6(𝑟) + 𝑐8 Φ(𝑟, 𝜃, 𝜑) + 𝑐9 f7(𝑟)|∇×𝐵|2,
(1.9)

where the viscous heating Φ is given by

Φ(𝑟, 𝜃, 𝜑) = 𝑐5𝒟𝑖𝑗𝑒𝑖𝑗 = 2 𝑐5 f1(𝑟)f3(𝑟)

[︂
𝑒𝑖𝑗𝑒𝑖𝑗 −

1

3
(∇ · 𝑣)2

]︂
= 2 𝑐5 f1(𝑟)f3(𝑟)

[︂
𝑒𝑖𝑗 −

1

3
(∇ · 𝑣) 𝛿𝑖𝑗

]︂2
.

(1.10)

Finally, the evolution of 𝐵 is described by the induction equation

𝜕𝐵

𝜕𝑡
= ∇× [𝑣 ×𝐵 − 𝑐7 f7(𝑟)∇×𝐵 ] . (1.11)
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Note that when Rayleigh actually solves the equations, the following additional derivative functions are used:

f8(𝑟) =
𝑑 ln f1
𝑑𝑟

f9(𝑟) =
𝑑2 ln f1
𝑑𝑟2

f10(𝑟) =
𝑑 ln f4
𝑑𝑟

f11(𝑟) =
𝑑 ln f3
𝑑𝑟

f12(𝑟) =
𝑑 ln f5
𝑑𝑟

f13(𝑟) =
𝑑 ln f7
𝑑𝑟

.

When supplying a custom reference state, the user may specify the six derivative functions “by hand.” If
the user fails to do so, Rayleigh will compute the required derivatives (only if the user supplies the function
whose derivative is to be taken) from the function’s Chebyshev coefficients.

Note that equations (1.5)-(1.11) could have been formulated in other ways. For instance, we could combine
f1 and f3 into a single function in Equation (1.10). The form of the equations presented here has been chosen
to reflect that actually used in the code, which was originally written dimensionally.

We now describe the nondimensional Boussinesq, and dimensional/nondimensional anelastic formulations
used in the code.

Nondimensional Boussinesq Formulation of the MHD Equations

Rayleigh can be run using a nondimensional, Boussinesq formulation of the MHD equations
(reference_type=1). The nondimensionalization employed is as follows:

Length → 𝐿 (Shell Depth)

Time → 𝐿2

𝜈𝑜
(Viscous Timescale)

Temperature → ∆𝑇 (Temperature Contrast Across Shell)

Magnetic Field →
√︀
𝜌𝜇𝜂𝑜Ω0

Reduced Pressure → 𝜈𝑜Ω0 ([Thermodynamic Pressure]/𝜌),

where Ω0 is the rotation rate of the frame, 𝜌 is the (constant) density of the fluid, 𝜂𝑜 is the magnetic diffusivity
at the top of the domain (i.e., at 𝑟 = 𝑟𝑜), 𝜈𝑜 is the kinematic viscosity at the top of the domain, and 𝜇 is the
magnetic permeability. Note that in Gaussian units for vacuum, 𝜇 = 4𝜋. After nondimensionalizing, the
following nondimensional numbers appear in our equations:

𝑃𝑟 =
𝜈𝑜
𝜅𝑜

Prandtl Number

𝑃𝑚 =
𝜈𝑜
𝜂𝑜

Magnetic Prandtl Number

𝐸 =
𝜈𝑜

Ω0 𝐿2
Ekman Number

𝑅𝑎 =
𝛼𝑔𝑜∆𝑇 𝐿3

𝜈𝑜𝜅𝑜
Rayleigh Number,
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where 𝛼 is coefficient of thermal expansion, 𝑔𝑜 is the gravitational acceleration at the top of the domain, and
𝜅 is the thermal diffusivity. Adopting this nondimensionalization is equivalent to assigning the following to
the functions f𝑖(𝑟) and the constants 𝑐𝑖:

f1(𝑟) → 1 𝑐1 →
2

𝐸

f2(𝑟) →
(︂

𝑟

𝑟𝑜

)︂𝑛

𝑐2 →
𝑅𝑎

𝑃𝑟

f3(𝑟) → 𝜈(𝑟) 𝑐3 →
1

𝐸

f4(𝑟) → 1 𝑐4 →
1

𝐸 𝑃𝑚
f5(𝑟) → 𝜅̃(𝑟) 𝑐5 → 1

f6(𝑟) → 0 𝑐6 →
1

𝑃𝑟

f7(𝑟) → 𝜂(𝑟) 𝑐7 →
1

𝑃𝑚
... 𝑐8 → 0

... 𝑐9 → 0

... 𝑐10 → 0

f14(𝑟) → 0 𝑐11 → 0.

Here the tildes denote nondimensional radial profiles, e.g., 𝜈(𝑟) = 𝜈(𝑟)/𝜈𝑜.

Our choice of f14(𝑟) → 0 sets the default atmosphere in non-dimensional Boussinesq to be neutrally stable.
For other choices (i.e., convectively stable or unstable), one must use the custom-reference-state framework.

Our choice of f2(𝑟) allows gravity to vary with radius based on the value of the exponent 𝑛, which has a
default value of 0 in the code. Note also that our definition of 𝑅𝑎 assumes fixed-temperature boundary
conditions. We might specify fixed-flux boundary conditions and/or an internal heating through a suitable
choice 𝑐10f6(𝑟), in which case the meaning of 𝑅𝑎 in our equation set changes, with 𝑅𝑎 denoting a flux
Rayleigh number instead. In addition, ohmic and viscous heating, which do not appear in the Boussinesq
formulation, are turned off when this nondimensionalization is specified at runtime. When these substitutions
are made, Equations (1.5)-(1.11) transform as follows.[︂

𝜕𝑣

𝜕𝑡
+ 𝑣 ·∇𝑣 +

2

𝐸
𝑧 × 𝑣

]︂
=

𝑅𝑎

𝑃𝑟

(︂
𝑟

𝑟𝑜

)︂𝑛

Θ 𝑟 − 1

𝐸
∇𝑃 +

1

𝐸 𝑃𝑚
(∇×𝐵) ×𝐵 + ∇ ·𝒟[︂

𝜕Θ

𝜕𝑡
+ 𝑣 ·∇Θ

]︂
=

1

𝑃𝑟
∇ · [𝜅̃(𝑟)∇Θ]

𝜕𝐵

𝜕𝑡
= ∇×

[︂
𝑣 ×𝐵 − 1

𝑃𝑚
𝜂(𝑟)∇×𝐵

]︂
𝒟𝑖𝑗 = 2𝜈(𝑟)𝑒𝑖𝑗

∇ · 𝑣 = 0

∇ ·𝐵 = 0

Here Θ refers to the temperature (perturbation from the background) and 𝑃 to the reduced pressure (ratio of
the thermodynamic pressure to the constant density).
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Dimensional Anelastic Formulation of the MHD Equations

When run in dimensional, anelastic mode (cgs units; reference_type=2 ), the following values are assigned
to the functions f𝑖 and the constants 𝑐𝑖:

f1(𝑟) → 𝜌(𝑟) 𝑐1 → 2Ω0

f2(𝑟) → 𝜌(𝑟)

𝑐𝑃
𝑔(𝑟) 𝑐2 → 1

f3(𝑟) → 𝜈(𝑟) 𝑐3 → 1

f4(𝑟) → 𝑇 (𝑟) 𝑐4 →
1

4𝜋
f5(𝑟) → 𝜅(𝑟) 𝑐5 → 1

f6(𝑟) → 𝑄(𝑟)

𝐿*
𝑐6 → 1

f7(𝑟) → 𝜂(𝑟) 𝑐7 → 1

... 𝑐8 → 1

... 𝑐9 →
1

4𝜋
... 𝑐10 → 𝐿*

f14(𝑟) → 𝑑𝑆

𝑑𝑟
𝑐11 → 1.

Here 𝜌(𝑟), 𝑇 (𝑟), and 𝑑𝑆/𝑑𝑟 are the spherically symmetric, time-independent reference-state density, tem-
perature, and entropy gradient, respectively. The thermal variables satisfy the linearized equation of state

𝑃

𝑃
=

𝑇

𝑇
+

𝜌

𝜌

𝑔(𝑟) is the gravitational acceleration, 𝑐𝑃 is the specific heat at constant pressure, and Ω0 is the frame rotation
rate. The viscous, thermal, and magnetic diffusivities (also assumed to be spherically symmetric and time-
independent) are given by 𝜈(𝑟), 𝜅(𝑟), and 𝜂(𝑟), respectively. Note that the entropy gradient term 𝑓14(𝑟)𝑣𝑟 is
only used in Equation (1.9) if advect_reference_state=.true.. Finally, 𝑄(𝑟) is an internal heating function;
it might represent radiative heating or heating due to nuclear fusion, for instance. In our convention, the
volume integral of f6(𝑟) equals unity, and 𝑐10 equals the luminosity or heating_integral 𝐿* specified in the
main_input file. When using a custom reference state, this allows easy adjustment of the luminosity using
the override_constants formalism, e.g.,

override_constants(10) = T
ra_constants(10) = 3.846d33
specified in the in the reference_namelist.
Note that in the anelastic formulation, the thermal variable Θ is interpreted as the entropy perturbation, rather
than the temperature perturbation. When these substitutions are made, Equations (1.5)-(1.11) transform as
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follows.

𝜌(𝑟)

[︂
𝜕𝑣

𝜕𝑡
+ 𝑣 ·∇𝑣 + 2Ω0𝑧 × 𝑣

]︂
=

𝜌(𝑟)

𝑐𝑃
𝑔(𝑟)Θ 𝑟 + 𝜌(𝑟)∇

(︂
𝑃

𝜌(𝑟)

)︂
+

1

4𝜋
(∇×𝐵) ×𝐵 + ∇ ·𝒟

𝜌(𝑟)𝑇 (𝑟)

[︃
𝜕Θ

𝜕𝑡
+ 𝑣 ·∇Θ + 𝑣𝑟

𝑑𝑆

𝑑𝑟

]︃
= ∇ ·

[︁
𝜌(𝑟)𝑇 (𝑟)𝜅(𝑟)∇Θ

]︁
+ 𝑄(𝑟)

+ Φ(𝑟, 𝜃, 𝜑) +
𝜂(𝑟)

4𝜋
[∇×𝐵]2

𝜕𝐵

𝜕𝑡
= ∇× [𝑣 ×𝐵 − 𝜂(𝑟)∇×𝐵 ]

𝒟𝑖𝑗 = 2𝜌(𝑟) 𝜈(𝑟)

[︂
𝑒𝑖𝑗 −

1

3
(∇ · 𝑣) 𝛿𝑖𝑗

]︂
Φ(𝑟, 𝜃, 𝜑) = 2 𝜌(𝑟)𝜈(𝑟)

[︂
𝑒𝑖𝑗𝑒𝑖𝑗 −

1

3
(∇ · 𝑣)2

]︂
∇ · [𝜌(𝑟)𝑣] = 0

∇ ·𝐵 = 0.

Nondimensional Anelastic MHD Equations

To run in nondimensional anelastic mode, you must set reference_type=3 in the Reference_Namelist. The
reference state is assumed to be polytropic with a 1

𝑟2
profile for gravity. When this mode is active, the

following nondimensionalization is used (following Heimpel et al., 2016, Nat. Geo., 9, 19 ):

Length → 𝐿 ≡ 𝑟𝑜 − 𝑟𝑖 (Shell Depth)

Time → 1

Ω0
(Rotational Timescale)

Temperature → 𝑇𝑜 ≡ 𝑇 (𝑟𝑜) (Reference Temperature at Upper Boundary)

Density → 𝜌𝑜 ≡ 𝜌(𝑟𝑜) (Reference Density at Upper Boundary)

Entropy → ∆𝑠 (Entropy Constrast Across Shell)

Magnetic Field →
√︀
𝜌𝑜𝜇𝜂𝑜Ω0

Pressure → 𝜌𝑜𝐿
2Ω2

0.

When run in this mode, Rayleigh employs a polytropic background state, with an assumed 1
𝑟2

variation in
gravity. These choices result in the functions f𝑖 and the constants 𝑐𝑖 (tildes indicate nondimensional reference-
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state variables):

f1(𝑟) → 𝜌(𝑟) 𝑐1 → 2

f2(𝑟) → 𝜌(𝑟)
𝑟2max

𝑟2
𝑐2 → Ra*

f3(𝑟) → 𝜈(𝑟) 𝑐3 → 1

f4(𝑟) → 𝑇 (𝑟) 𝑐4 →
E

Pm
f5(𝑟) → 𝜅̃(𝑟) 𝑐5 → E

f6(𝑟) → 𝑄̃(𝑟)

𝐿*
; 𝑐6 →

E

Pr

f7(𝑟) → 𝜂(𝑟) 𝑐7 →
E

Pm
... 𝑐8 →

E Di

Ra*

... 𝑐9 →
E2 Di

Pm2Ra*

... 𝑐10 → 𝐿*

f14(𝑟) → 0 𝑐11 → 0.

As in the Boussinesq case, the nondimensional diffusivities are defined according to, e.g., 𝜈(𝑟) ≡ 𝜈(𝑟)/𝜈𝑜.
The nondimensional heating 𝑄̃(𝑟) is defined such that its volume integral equals the nondimensional lu-
minosity or heating_integral set in the main_input file. As in the dimensional anelastic case, the volume
integral of f6(𝑟) equals unity, and c10 = 𝐿*. The unit for luminosity in this nondimensionalization (to get a
dimensional luminosity from the nondimensional 𝐿*) is 𝜌𝑜𝐿3𝑇𝑜∆𝑠Ω0.

Two new nondimensional numbers appear in our equations, in addition to those defined for the Boussinesq
case. Di, the dissipation number, is defined by

Di =
𝑔𝑜 L

𝑐P 𝑇𝑜
, (1.12)

where 𝑔𝑜 and 𝑇𝑜 are the gravitational acceleration and temperature at the outer boundary respectively. Once
more, the thermal anomaly Θ should be interpreted as (nondimensional) entropy. The symbol Ra* is the
modified Rayleigh number, given by

Ra* =
𝑔𝑜

𝑐PΩ2
0

∆𝑠

𝐿
(1.13)
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We thus arrive at the following nondimensionalized equations:

𝜌(𝑟)

[︂
𝜕𝑣

𝜕𝑡
+ 𝑣 ·∇𝑣 + 2𝑧 × 𝑣

]︂
= Ra*𝜌(𝑟)

(︂
𝑟2max

𝑟2

)︂
Θ 𝑟 + 𝜌(𝑟)∇

(︂
𝑃

𝜌(𝑟)

)︂
+

E

Pm
(∇×𝐵) ×𝐵 + E∇ ·𝒟

𝜌(𝑟)𝑇 (𝑟)

[︂
𝜕Θ

𝜕𝑡
+ 𝑣 ·∇Θ

]︂
=

E

Pr
∇ ·

[︁
𝜅̃(𝑟)𝜌(𝑟)𝑇 (𝑟)∇Θ

]︁
+ 𝑄̃(𝑟)

+
E Di

Ra*
Φ(𝑟, 𝜃, 𝜑) +

Di E2

Pm2Ra*
𝜂(𝑟)|∇×𝐵|2

𝜕𝐵

𝜕𝑡
= ∇×

[︂
𝑣 ×𝐵 − E

Pm
𝜂(𝑟)∇×𝐵

]︂
𝒟𝑖𝑗 = 2𝜌(𝑟)𝜈(𝑟)

[︂
𝑒𝑖𝑗 −

1

3
∇ · 𝑣

]︂
Φ(𝑟, 𝜃, 𝜑) = 2𝜌(𝑟)𝜈(𝑟)

[︂
𝑒𝑖𝑗𝑒𝑖𝑗 −

1

3
(∇ · 𝑣)2

]︂
∇ · [𝜌(𝑟)𝑣] = 0

∇ ·𝐵 = 0.

1.2.3 The Streamfunction Formulation

The velocity field in Rayleigh is evolved subject to the solenoidal constraint

∇ · [f1(𝑟)𝑣] = 0. (1.14)

This is accomplished by casting f1𝑣 in terms of streamfunctions such that

f1 𝑣 = ∇×∇× (𝑊 𝑟) + ∇× (𝑍 𝑟) , (1.15)

where W and Z are referred to as the poloidal and toroidal stream functions respectively. Rather than evolving
the three components of 𝑣 directly, the momentum equations are cast in terms of these variables before
advancing the timestep. The velocity components are related to the streamfunctions via the relations:

f1𝑣𝑟 = − 1

𝑟2sin𝜃

𝜕

𝜕𝜃

(︂
sin𝜃

𝜕𝑊

𝜕𝜃

)︂
− 1

𝑟2sin2𝜃

𝜕2𝑊

𝜕𝜑2
, (1.16)

f1 𝑣𝜃 =
1

𝑟

𝜕2𝑊

𝜕𝑟𝜕𝜃
+

1

𝑟sin𝜃

𝜕𝑍

𝜕𝜑
, (1.17)

and

f1𝑣𝜑 =
1

𝑟sin𝜃

𝜕2𝑊

𝜕𝑟𝜕𝜑
− 1

𝑟

𝜕𝑍

𝜕𝜃
. (1.18)

When the velocity field and streamfunctions are projected onto a spherical harmonic basis, two additional
useful relations are given by

[f1 𝑣𝑟]
𝑚
ℓ =

ℓ(ℓ + 1)

𝑟2
𝑊𝑚

ℓ
(1.19)
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and

[{∇× (f1 𝑣)}𝑟]
𝑚
ℓ =

ℓ(ℓ + 1)

𝑟2
𝑍𝑚
ℓ . (1.20)

A similar decomposition is performed on the magnetic field to ensure it remains divergence free. In that
case, the magnetic field is projected onto flux functions such that

𝐵 = ∇×∇× (𝐶 𝑟) + ∇× (𝐴 𝑟) , (1.21)

where C and A are the poloidal and toroidal flux functions respectively. Similar to the velocity field, the
components of 𝐵 satisfy

𝐵𝑟 = − 1

𝑟2sin𝜃

𝜕
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(︂
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𝜕𝐶

𝜕𝜃
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− 1

𝑟2sin2𝜃

𝜕2𝐶

𝜕𝜑2
, (1.22)
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, (1.23)
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− 1

𝑟

𝜕𝐴

𝜕𝜃
, (1.24)

[𝐵𝑟]
𝑚
ℓ =

ℓ(ℓ + 1)

𝑟2
𝐶𝑚
ℓ , (1.25)

and

[{∇×𝐵}𝑟]
𝑚
ℓ =

ℓ(ℓ + 1)

𝑟2
𝐴𝑚

ℓ . (1.26)

1.2.4 The Pseudospectral Approach

Section needed.

1.2.5 Parallelization and Performance

Section needed.
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1.3 Setting Up a Model

This section details the basics of running a custom model in Rayleigh. For a commplete list of all Rayleigh
input parameters, see Input parameters.

1.3.1 Preparation

Each simulation run using Rayleigh should have its own directory. The code is run from within that directory,
and any output is stored in various subdirectories created by Rayleigh at run time. Wherever you create your
simulation directory, ensure that you have sufficient space to store the output.

Do not run Rayleigh from within the source code directory. Do not cross the beams: no running two
models from within the same directory.
After you create your run directory, you will want to copy (cp) or soft link (ln -s ) the executable from
Rayleigh/bin to your run directory. Soft-linking is recommended; if you recompile the code, the executable
remains up-to-date. If running on an IBM machine, copy the script named Rayleigh/etc/make_dirs to your
run directory and execute the script. This will create the directory structure expected by Rayleigh for its
outputs. This step is unnecessary when compiling with the Intel, GNU, AOCC, or Cray compilers.

Next, you must create a main_input file. This file contains the information that describes how your simulation
is run. Rayleigh always looks for a file named main_input in the directory that it is launched from. Copy
one of the sample input files from the Rayleigh/input_examples/ into your run directory, and rename it to
main_input. The file named benchmark_diagnostics_input can be used to generate output for the diagnostics
plotting tutorial (see §diagnostics).

Finally, Rayleigh has some OpenMP-related logic that is still in development. We do not support Rayleigh’s
OpenMP mode at this time, but on some systems, it can be important to explicitly disable OpenMP in order
to avoid tripping any OpenMP flags used by external libraries, such as Intel’s MKL. Please be sure and run
the following command before executing Rayleigh. This command should be precede each call to Rayleigh.

export OMP_NUM_THREADS=1 (bash)
setenv OMP_NUM_THREADS 1 (c-shell)

1.3.2 Grid Setup

By default, Rayleigh employs a single-domain Chebyshev decomposition in radius and a spherical-harmonic
decomposition in the 𝜃 − 𝜑 directions. Additionally, multiple Chebyshev domains or a finite-difference
scheme may be alternatively employed in radius. We focus on the default mode first.
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Standard Grid Specification

The number of radial grid points is denoted by𝑁𝑟, and the number of 𝜃 grid points by𝑁𝜃. The number of grid
points in the 𝜑 direction is always𝑁𝜑 = 2×𝑁𝜃. 𝑁𝑟 and𝑁𝜃 may each be defined in the problemsize_namelist
of main_input:

&problemsize_namelist
n_r = 48
n_theta = 96
/

𝑁𝑟 and 𝑁𝜃 may also be specified at the command line (overriding the values in main_input) via:

mpiexec -np 8 ./rayleigh.opt -nr 48 -ntheta 96

If desired, the number of spherical harmonic degrees 𝑁ℓ or the maximal spherical harmonic degree ℓmax ≡
𝑁ℓ − 1 may be specified in lieu of 𝑁𝜃. The example above may equivalently be written as

&problemsize_namelist
n_r = 48
l_max = 63
/

or

&problemsize_namelist
n_r = 48
n_l = 64
/

The radial domain bounds are determined by the namelist variables rmin (the lower radial boundary) and
rmax (the upper radial boundary):

&problemsize_namelist
rmin = 1.0
rmax = 2.0
/

Alternatively, the user may specify the shell depth (rmax-rmin) and aspect ratio (rmin/rmax) in lieu of
rmin and rmax. The preceding example may then be written as:

&problemsize_namelist
aspect_ratio = 0.5
shell_depth = 1.0
/

Note that the interpretation of rmin and rmax depends on whether your simulation is dimensional or nondi-
mensional. We discuss these alternative formulations in §Underlying Physics
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Using Multiple Chebyshev Domains in Radius

It is possible to run Rayleigh with multiple, stacked domains in the radial direction. Each of these is dis-
cretized using their own set of Chebyshev polynomials. The boundaries and number of polynomials can be
set for each domain indiviadually, which makes it possible to control the radial resolution at different radii.

To use this feature the problem size has to be specified using domain_bounds and ncheby instead of rmin,
rmax, and n_r. ncheby takes a comma-separated list of the number of radial points to use in each domain.
domain_bounds takes a comma-separated list of the radii of the domain boundaries, starting with the small-
est radius. It has one element more than the number of domains. This is an example of two radial domains,
one covering the radii 1 to 2 with 16 radial points, the other the radii 2 to 4 with 64 radial points.

&problemsize_namelist
domain_bounds = 1.0, 2.0, 4.0
ncheby = 16, 64
/

Radial values in the diagnostic output will be repeated at the inner domain boundaries. Most quantities are
forced to be continuous at these points.

Employing a Finite-Difference Approach in Radius

Rayleigh’s default behavior is to employ a Chebyshev collocation scheme in radius. If desired, a finite-
difference method can be applied instead. This mode is activated by setting the value of chebyshev to
.false. in the numerical_controls_namelist. At present, Rayleigh’s finite-difference scheme employs a
five-point stencil with 4th-order accuracy in the interior points. Boundary derivatives are taken with second-
order accuracy. By default, a uniform radial grid is assumed. Consider the following example:

&problemsize_namelist
rmin = 1.0
rmax = 2.0
n_r = 4
dr_weights = 0.1,0.3,0.2
nr_count = 2,4,2
/
&numerical_controls_namelist
chebyshev=.false.
/

This results in the uniform grid:

radius = 1.000 , 1.333 , 1.667 , 2.000
dr = 0.333 , 0.333 , 0.333

An example input file using a uniform radial grid and a finite-difference scheme is provided in
input_examples\main_input_mhd_jones_FD. If desired, a nonuniform grid can also be generated.
There are two ways to do this: via main_input and via a grid-description file.
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Using Main_Input to Specify a Nonuniform Grid

The first method of specifying a nonuniform grid is to join together a series of uniformly-gridded subdo-
mains with different grid spacings. This is accomplished using the dr_weight and nr_count parameters.
nr_count indicates the number of gridpoints within each subregion, and dr_weight indicates the relative
size of the grid spacing within each region. Consider the following example:

&problemsize_namelist
rmin = 1.0
rmax = 2.0
n_r = 4
dr_weights = 0.1,0.3,0.2
nr_count = 2,4,2
/

This example defines a nonuniform grid ranging from 1.0 to 2.0 with 8 gridpoints (Rayleigh will reset the
value of n_r to be the total of nr_count). The grid spacing within the first 2-point region will be 1/3 of that
in the second, 4-point region. Similarly, the grid-spacing in the third, 2-point region will be 2/3 that of the
second region and twice that of the first region. The resulting radial grid and spacing is:

radius = 1.000 , 1.059 , 1.235 , 1.412 , 1.588 , 1.765 , 1.882 , 2.
dr = 0.059 , 0.176 , 0.176 , 0.176 , 0.176 , 0.118 , 0.118

Note that for n_r points, there are n_r-1 spaces between gridpoints. Rayleigh’s convention is to apply
dr_weights(1) nr_count(1)-1 times. As a result, specifying a symmetric nr_count will lead to assymetry in
the grid spacing. We can adjust this by adding one to nr_count(1) and subtracting one from nr_count(2) so
that we have:

&problemsize_namelist
rmin = 1.0
rmax = 2.0
n_r = 4
dr_weights = 0.1,0.3,0.2
nr_count = 3,3,2
/

This results in the symmetric grid:

radius = 1.000 , 1.067 , 1.133 , 1.333 , 1.533 , 1.733 , 1.867 , 2.000
dr = 0.067 , 0.067 , 0.200 , 0.200 , 0.200 , 0.133 , 0.133

Be sure to leave the nr_count and dr_weights parameters unset in main_input if you wish to use a
uniform grid in radius.

1.3. Setting Up a Model 29



Rayleigh

Using a Grid-Description File to Specify a Nonuniform Grid

NOTE: The functionality described below is currently incompatible with Rayleigh’s ensemble mode.

An arbitrary radial grid may also be generated using Python and then stored to a file that is read when Rayleigh
initializes. To do so, import the reference_tools module and define a custom grid as illustrated by the code
snippet below.

import numpy # Import necessary modules
import reference_tools as rt

ri = 0.5 # Inner radius
ro = 1.5 # Outer radius
nr = 128 # Number of radial points
radius = numpy.linspace(ri,ro,nr) # The radial grid

my_grid = rt.radial_grid(radius) # Instantiate the grid object

my_grid.write('grid_layout_128.dat') # Store contents to file

Note that we could have generated the grid in either ascending or descending order. The write method ac-
counts for the grid-ordering before storing its contents to the file. Now that we have created a grid-description
file (‘grid_layout_128.dat’ in this example), we indicate the relevant filename in main_input using the
radial_grid_file parameter:

&problemsize_namelist
n_theta = 32
radial_grid_file = 'grid_layout_128.dat'
/
&numerical_controls_namelist
chebyshev=.false.
/

There are two important points to be aware of:

1. When radial_grid_file is specified, all information concerning the grid structure is derived from
that file. The values of rmin, rmax, N_R etc. are completely ignored. For this reason, we strongly
suggest indicating N_R in the grid file’s name.

2. In the event that radial_grid_file, nr_count and dr_weights are simultaneously specified, the
grid-description file takes precedence.

There is one exception to point 1 above because there may be instances where the same grid structure is
useful for problems with different values of rmin and rmax. If desired, the grid stored in radial_grid_file can
be rescaled to a new rmin and rmax by setting the rescale_radial_grid keyword to true:

&problemsize_namelist
n_theta = 32
rmin = 1.0
rmax = 2.0

(continues on next page)
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rescale_radial_grid = .true.
radial_grid_file = 'grid_layout_128.dat'
/
&numerical_controls_namelist
chebyshev=.false.
/

The example above will generate a grid identical to that stored in the grid file, but rescaled to run from r=1
to r=2, rather than r=0.5 to r=1.5 as specified in the original Python code.

1.3.3 Numerical Controls

The Numerical_Controls namelist was added to facilitate fine-control over some aspects of Rayleigh’s par-
allelization and is documented in Input parameters. Two numerical_controls parameters worth mentioning
that are particularly important for setting up a new model are the chebyshev and bandsolve keywords.

The value of chebyshev is set to .true. by default. When set to .false., a finite-difference scheme will
be employed in radius rather than a Chebyshev collocation scheme.

The value of the bandsolve keyword is also set to .false. by default. When set to .true., the otherwise
dense matrices used in the implicit timestepping scheme will be recast in banded or block-banded form for
the finite-difference and Chebyshev schemes respectively. This can save memory and may offer performance
gains. Note that this mode has no effect for models run in Chebyshev mode with only 1 or 2 Chebyshev
domains in radius. A minimum of three Chebyshev domains is required before any memory savings is
possible.

1.3.4 Physics Controls

Many physical effects can be turned on or off in Rayleigh. The details of what physics you want to include
will depend on the type of model you want to run. Be careful, however, that if you are adapting an input file
from the benchmark described in Installation on HPC systems that you set benchmark_mode to 0 or omit it
entirely, as this will override other input flags in favor of running the specified benchmark.

A number of logical variables can be used to turn certain physics on (value = .true.) or off ( value = .false.).
These variables are described in Table table_logicals, with default values indicated in brackets.

Table. Logicals.
Variables in the Physical_Controls_Namelist that may be specified to control run behavior (defaults indicated
in brackets)

Variable [Default value] Description
magnetism [.false.] Turn magnetism on or off
rotation [.false.] Turn rotation on or off (pressure is not scaled by E when off)
lorentz_forces [.true.] Turn Lorentz forces on or off (magnetism must be .true.)
viscous_heating [.true.] Turn viscous heating on or off (inactive in Boussinesq mode)
ohmic_heating [.true.] Turn ohmic heating off or on (inactive in Boussinesq mode)
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1.3.5 Initial Conditions

A Rayleigh simulation may be initialized with a random thermal and/or magnetic field, or it may be restarted
from an existing checkpoint file (see §Checkpointing for a detailed discussion of checkpointing). This be-
havior is controlled through the initial_conditions_namelist and the init_type and magnetic_init_type
variables. The init_type variable controls the behavior of the velocity and thermal fields at initialization
time. Available options are:

• init_type=-1 ; read velocity and thermal fields from a checkpoint file

• init_type=1 ; Christensen et al. (2001) case 0 benchmark init ( {ℓ = 4,𝑚 = 4} temperature mode)

• init_type=6 ; Jones et al. (2011) steady anelastic benchmark ( {ℓ = 19,𝑚 = 19} entropy mode)

• init_type=7 ; random temperature or entropy perturbation

• init_type=8 ; user generated temperature or entropy perturbation (see Generic Initial Conditions below)

When initializing a random thermal field, all spherical harmonic modes are independently initialized with a
random amplitude whose maximum possible value is determined by the namelist variable temp_amp. The
mathematical form of of this random initialization is given by

𝑇 (𝑟, 𝜃, 𝜑) =
∑︁
ℓ

∑︁
𝑚

𝑐𝑚ℓ 𝑓(𝑟)𝑔(ℓ)Y𝑚
ℓ (𝜃, 𝜑),

where the 𝑐𝑚ℓ ’s are (complex) random amplitudes, distributed normally within the range [-temp_amp,
temp_amp]. The radial amplitude 𝑓(𝑟) is designed to taper off to zero at the boundaries and is given by

𝑓(𝑟) =
1

2

[︂
1 − cos

(︂
2𝜋
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)︂]︂
.

The amplitude function 𝑔(ℓ) concentrates power in the central band of spherical harmonic modes used in the
simulation. It is given by

𝑔(ℓ) = exp

[︃
−9

(︂
2 ℓ− ℓmax

ℓmax

)︂2
]︃
,

which is itself, admittedly, a bit random.

When initializing using a random thermal perturbation, it is important to consider whether it makes sense
to separately initialize the spherically-symmetric component of the thermal field with a profile that is in
conductive balance. This is almost certainly the case when running with fixed temperature conditions. The
logical namelist variable conductive_profile can be used for this purpose. It’s default value is .false. (off),
and its value is ignored completely when restarting from a checkpoint. To initialize a simulation with a
random temperature field superimposed on a spherically-symmetric, conductive background state, something
similar to the following should appear in your main_input file:

&initial_conditions_namelist
init_type=7
temp_amp = 1.0d-4
conductive_profile=.true.
/
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Alternatively, you may wish to specify an ell=0 initial thermal profile that is neither random
nor conductive. To create your own profile, follow the example found in Rayleigh/examples/cus-
tom_thermal_profile/custom_thermal_profile.ipynb. Then, use the following combination of input parame-
ters in main_input:

&initial_conditions_namelist
init_type=7
temp_amp = 1.0d-4
custom_thermal_file = 'my_custom_profile.dat'
/

This will use the radial profile stored in my_custom_profile.dat for the ell=0 component of entropy/temper-
ature Random values will be used to initialize all other modes.

Magnetic-field initialization follows a similar pattern. Available values for magnetic_input type are:

• magnetic_init_type = -1 ; read magnetic field from a checkpoint file

• magnetic_init_type = 1 ; Christensen et al. (2001) case 0 benchmark init

• magnetic_init_type = 7 ; randomized vector potential

• magnetic_init_type=8 ; user generated magnetic potential fields (see Generic Initial Conditions below)

For the randomized magnetic field, both the poloidal and toroidal vector-potential functions are given a
random power distribution described by Equation eq_init. Each mode’s random amplitude is then determined
by namelist variable mag_amp. This variable should be interpreted as an approximate magnetic field strength
(it’s value is rescaled appropriately for the poloidal and toroidal vector potentials, which are differentiated to
yield the magnetic field).

When initializing all fields from scratch, a main_input file should contain something similar to:

&initial_conditions_namelist
init_type=7
temp_amp = 1.0d-4
conductive_profile=.true. ! Not always necessary (problem dependent) ...
magnetic_init_type=7
mag_amp = 1.0d-1
/

Generic Initial Conditions

The user can input any initial conditions from data files generated by a python routine
“rayleigh_spectral_input.py”, which can be called as a script or imported as a python class.

The available generic initial conditions options are

&initial_conditions_namelist
init_type=8
T_init_file = '<filename>' !! Temperature
W_init_file = '<filename>' !! Poloidal velocity potential
Z_init_file = '<filename>' !! Toroidal velocity potential

(continues on next page)
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P_init_file = '<filename>' !! `Pressure` potential
magneic_init_type=8
C_init_file = '<filename>' !! Poloidal magnetic potential
A_init_file = '<filename>' !! Toroidal magnetic potential

/

where T_init_file is a user generated initial temperature field and <filename> is the name of the file generated
by the python script. If T_init_file is not specified the initial field will be zero by default. The same for the
other fields. Fields T, W, Z, and P are only initialized from the file if init_type=8. Fields C and A are only
initialized from file if magnetic_init_type=8.

To generate a generic initial condition input file, for example, if a user wanted to specify a single mode in
that input file then they could just run the script:

rayleigh_spectral_input.py -m 0 0 0 1.+0.j -o example

to specify (n,l,m) = (0,0,0) to have a coefficient 1.+0.j and output it to the file example.

This could also be done using the python as a module. In a python shell this would look like:

from rayleigh_spectral_input import *
si = SpectralInput()
si.add_mode(1., n=0, l=0, m=0)
si.write('example')

For a more complicated example, e.g. the hydrodynamic benchmark from Christensen et al. 2001, the user
can specify functions of theta, phi and radius that the python will convert to spectral:

rayleigh_spectral_input.py -ar 0.35 -sd 1.0 -nt 96 -nr 64 -o example \
-e 'import numpy as np; x = 2*radius - rmin - rmax;
rmax*rmin/radius - rmin + 210*0.1*(1 - 3*x*x + 3*(x**4) -
x**6)*(np.sin(theta)**4)*np.cos(4*phi)/np.sqrt(17920*np.pi)'

in “script” mode.

Alternatively, in “module” mode in a python shell:

from rayleigh_spectral_input import *
si = SpectralInput(n_theta=96, n_r=64)
rmin, rmax = radial_extents(aspect_ratio=0.35, shell_depth=1.0)
def func(theta, phi, radius):

x = 2*radius - rmin - rmax
return rmax*rmin/radius - rmin + 210*0.1*(1 - 3*x*x + 3*(x**4) - x**6)*(np.

→˓sin(theta)**4)*np.cos(4*phi)/np.sqrt(17920*np.pi)
si.transform_from_rtp_function(func, aspect_ratio=0.35, shell_depth=1.0)
si.write('example')

The above commands will generate a file called example which can be called by
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&initial_conditions_namelist
init_type=8
T_init_file = 'example'

Note that these two examples will have produced different data formats - the first one sparse (listing only the
mode specified) and the second one dense (listing all modes).

For more examples including magnetic potentials see tests/generic_input.

1.3.6 Custom Reference States

If desired, the constant and nonconstant equation coefficients enumerated here may be completely or partially
specified by the user. This allows the user to specify diffusivity profiles, background states, or nondimen-
sionalizations that are not supplied by Rayleigh. Two use cases are supported:

1. One of Rayleigh’s predefined reference states may be used, but with some coefficients supplied instead
through an auxilliary coefficients file. For each predefined reference type, the coefficients file may be
used to override volumetric heating ( 𝑐10 + 𝑓6 ) and the transport coefficients 𝜈, 𝜅, 𝜂 ( 𝑐5 + 𝑓3, 𝑐6 +
𝑓5, 𝑐7 + 𝑓7 ). For Boussinesq runs, the buoyancy term may also be modified ( 𝑐2 + 𝑓2 ).

2. Nonconstant coefficents may be completely specified through the coefficients file. In this mode, acti-
vated by setting reference_type=4, the user must fully specify nonconstant coefficients 𝑓1 − 𝑓7.

In either case, constant coefficients may be defined within the coefficients file or, read in from main_input,
or some combination of the two. Moreover, the radial variation of transport coefficients, as specified by
nu_type, kappa_type, and eta_type flags is respected. We elaborate on this behavior below.

Creating a Coefficients File

The first step in modifying Rayleigh’s equation coefficients is to generate an equation coefficients file. This
file will be used alongside options defined in main_input to determine which combination of coefficients
are overridden. In order create your coefficients file, you will need to create an instance of the equa-
tion_coefficients class, provided in post_processing/reference_tools.py. Constant and nonconstant coeffi-
cients may then be set through set_constant and set_function methods respectively.

The equation_coefficient class is instantiated by passing a radial grid to its init method. This grid can be
cast in ascending or descending order, but it should generally possess a much finer mesh than what you plan
to use in Rayleigh. Nonconstant coefficients specified in the coefficients file will be interpolated onto the
Rayleigh grid at input time.

The file structure created through the class’s write method contains a record of those functions and contants
that have been set. Rayleigh uses this information at runtime along with main_input to to perform consistency
checks and to determine the values ultimately assigned to each constant coefficient.

The sample code below defines a file with sufficient information to alter the viscous, heating, and buoy-
ancy functions of a Rayleigh-provided reference state. This information would be insufficient for use with
reference_type=4, but several example notebooks handling that scenario are provided below.

import numpy
from reference_tools import equation_coefficients

(continues on next page)
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#Define a name for your equation coefficients file
ofile = 'my_coeffs.dat'

# Define the radial grid. We suggest using a uniform,
# but finer radial mesh than what you plan for Rayleigh.
# Rayleigh's radial domain bounds should match or fall
# within the domain bounds used for this radial grid.
nr = 2048 # number of radial points
ri = 0.5 # Inner radius
ro = 1.0 # Outer radius [aspect ratio = 0.5]
radius=numpy.linspace(ri,ro,nr, dtype='float64')

#Instantiate an equation_coefficients object
eqc = equation_coefficients(radius)

# Set the buoyancy, heating, and viscosity functions
# These particular choices may be questionable!
buoy = radius
nu = radius**2
heat = radius**3
eqc.set_function(buoy , 2) # set function 2
eqc.set_function(nu , 3) # set function 3
eqc.set_function(heat , 6) # set function 6

# Set the corresponding constants
cbuoy = 10.0
cnu = 20.0
cheat = 30.0
eqc.set_constant(cbuoy , 2) # set constant 2
eqc.set_constant(cnu , 5) # set constant 5
eqc.set_constant(cheat , 10) # set constant 10

#Generate the coefficients file
eqc.write(ofile)

Constant Coefficients: Runtime Control

While constant coefficients may be specified via the coefficients file, many of these coefficients represent
simulation “control knobs” that the user may wish to modify at run-time. For instance, the user may want to
frequently use a particular profile for viscous diffusion (𝑓3), but would like to vary its amplitude (𝑐5) between
simulations without generating a new coefficients file. Rayleigh provides the opportunity to override all
constant coefficients, or a subset of them, through the main_input file.

Consider the example below.

36 Chapter 1. User Guide



Rayleigh

&Reference_Namelist
...
custom_reference_file='mycoeffs.dat'
override_constants=T
ra_constants( 2) = 1.0
ra_constants( 5) = 10.0
ra_constants(10) = 14.0
...
/

In this example, values of constant coefficients 𝑐2, 𝑐5, 𝑐10 will be determined entirely via the main_input file
and assigned the values of 1.0, 10.0, and 14.0 respectively. Values specified in mycoeffs.dat will be ignored
completely.

This behavior is dictated by the override_constants flag, which instructs Rayleigh to ignore ALL constant
coefficients specified in the coefficients files. If a coefficient is not specified in main_input, its value will be
set to Rayleigh’s internal default value of 0. Consider the following example

&Reference_Namelist
...
custom_reference_file='mycoeffs.dat'
override_constants=T
ra_constants( 2) = 1.0
ra_constants(10) = 14.0
...
/

The resulting values of 𝑐2, 𝑐5, 𝑐10 will be 1.0, 0.0, and 14.0 respectively. The constant 𝑐5 will not be set to
20.0 (the value specified in the coefficients file).

To specify a subset of constants, use the override_constant flag for each constant you wish to override, as
shown below.

&Reference_Namelist
...
custom_reference_file='mycoeffs.dat'
override_constant( 2) = T
override_constant(10) = T
ra_constants( 2) = 1.0
ra_constants(10) = 14.0
...
/

In this case, the values of constants 𝑐2 and 𝑐10 will be taken the main_input file. The value of 𝑐5 will be taken
from the coefficients file. If a constant’s override flag is set, but its value is not specified in main_input, the
default value of zero will be used.

1.3. Setting Up a Model 37



Rayleigh

Augmenting a Rayleigh-Provided Reference State

When augumenting one of Rayleigh’s internal reference-state types, set the with_custom_reference flag (Ref-
erence_Namelist) to true in main_input. In addition, assign a list of values to with_custom_constants and
with_custom_functions. As an example, to modify the heating and buoyancy profiles using entirely infor-
mation provided through the equation coefficients file, main_input would contain the following

&Reference_Namelist
...
reference_type=1
custom_reference_file='mycoeffs.dat'
with_custom_reference=T
with_custom_constants=2,10
with_custom_functions=2,6
...
/

These flags can be used in tandem with the override flags to specify values via main_input. For example, the
following input combination would set a value of 𝑐2 of 13.0

&Reference_Namelist
...
reference_type=1
custom_reference_file='mycoeffs.dat'
with_custom_reference=T
with_custom_constants=2,10
with_custom_functions=2,6
override_constant(2)=T
ra_constants(2) = 13.0
...
/

Specifing an Entire Custom Reference State

To specify a full set of custom equation coefficients, set reference_type to 4. Constant coefficients may be
overridden, if desired, and as described above. Note that you must fully specify nonconstant coefficients
𝑓1 − 𝑓7. If desired, you may also specify their logarithmic derivatives on the fine mesh (see the anelastic
notebooks below). This is optional, however, as Rayleigh will compute those funtions if not provided.

&Reference_Namelist
...
reference_type = 4
custom_reference_file='mycoeffs.dat'
override_constant( 2) = T
override_constant(10) = T
ra_constants( 2) = 1.0
ra_constants(10) = 14.0

(continues on next page)
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...
/

Transport coefficients may also be specified as desired, but nu_type, kappa_type, and eta_type still behave
as described below. If you wish to specify a custom diffusivity profile, set the corresponding type to 3. In
that case, the corresponding nonconstant coefficient MUST be set in the equation coefficients file. Moreover,
if reference_type=4, these corresponding constant must be set in either the coefficients file or in main_input
(regardless of the diffusion type specified).

For diffusion types 2 and 3, if the reference_type is not 4, the value of {nu,kappa,eta}_top normally used by
that reference_type will be invoked if the corresponding constant coefficient is not set.

Finally, if specifying a custom form for the volumetric heating, please ensure that heating_type is set to
a positive, nonzero value in the reference_namelist. Otherwise, reference heating will be deactivated.
Any Rayleigh-initialization of the heating function that takes place initially will be overridden by the
with_custom_reference or reference_type=4 flags.

Custom Reference State Examples

The notebooks below provide several examples of how to generate a custom-equation-coefficient file. These
notebooks are located in the examples/custom_reference_states subdirectory of the main Rayleigh directory.
Each notebook has an accompanying main_input file, also located in this directory.

Custom reference state for a non-dimensional Boussinesq MHD setup in a convective spher-
ical shell

Custom reference state for a Boussinesq convective setup. We non-dimensionalize the MHD Boussinesq
equations using the rotation period such that [𝑡] = 1/Ω𝑜 is the timescale, the shell depth [𝑟] = 𝑟𝑜 − 𝑟𝑖 = 𝐿
is the lengthscale (where 𝑟𝑜 is the outer radius and 𝑟𝑖 is the inner radius), [𝑢] = 𝐿Ω𝑜 is the velocity scale,
and [𝑇 ] = ∆𝑇 is the temperature scale*. Assuming that Θ are the temperature perturbations, the non-
dimensional Boussinesq equations can be written as:

𝜕𝑢⃗

𝜕𝑡
+ 𝑢⃗ · ∇𝑢⃗ + 2𝑧 × 𝑢⃗ = −∇𝑃

𝜌𝑚
+ Ra*

(︁𝑟𝑜
𝑟

)︁𝑛
Θ𝑒𝑟 +

1

4𝜋

𝐸

Pm
(∇× 𝐵⃗) × 𝐵⃗ + 𝐸∇2𝑢⃗ (1.27)

∇ · 𝑢⃗ = 0 (1.28)

𝜕Θ

𝜕𝑡
+ 𝑢⃗ · ∇Θ =

𝐸

Pr
∇2Θ (1.29)

and

𝜕𝐵⃗

𝜕𝑡
−∇× (𝑢⃗× 𝐵⃗) =

𝐸

Pm
∇2𝐵⃗. (1.30)
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We have assumed that 𝜈, 𝜅, and 𝜂 are constants, 𝜌𝑚 is the mean denisty and 𝑛 is the gravity power (hence
e.g. 𝑛 = 0 for constant gravity). We also have the modified Rayleigh number Ra* given by

Ra* =
𝛼𝑔𝑜∆𝑇

𝐿Ω2
𝑜

=
Ra

Pr
𝐸2, (1.31)

where 𝑔⃗(𝑟) = 𝑔𝑜(𝑟𝑜/𝑟)𝑛 , Pr=𝜈/𝜅 is the Prandtl number, 𝐸 =
𝜈

𝐿2Ω𝑜
is the Ekman number and Ra=

𝛼𝑔𝑜∆𝑇𝐿3/(𝜅𝜈). Finally, the magnetic Prandtl number is P𝑚 = 𝜈/𝜂. Then the corresponding fuctions 𝑓
used here are:

𝑓1(𝑟) → 1,

𝑓2(𝑟) → (𝑟𝑜/𝑟)𝑛,

𝑓3(𝑟) → 1,

𝑓4(𝑟) → 1,

𝑓5(𝑟) → 1,

𝑓6(𝑟) → 0,

𝑓7(𝑟) → 1,

𝑓8(𝑟) → 0,

𝑓9(𝑟) → 0,

𝑓10(𝑟) → 0,

𝑓14(𝑟) → 0,

𝑓15(𝑟) → 0,

𝑓16(𝑟) → 1

and the constants 𝑐 are:

𝑐1 → 2,

𝑐2 → 𝑅𝑎𝐸2/𝑃𝑟,

𝑐3 → 1,

𝑐4 → 𝐸/(4𝜋Pm),

𝑐5 → 𝐸,

𝑐6 → 𝐸/Pr,

𝑐7 → 𝐸/Pm,

𝑐8 → 0,

𝑐9 → 0,

𝑐10 → 0.

*This is the relevant temperature scale for isothermal BCs – for fixed flux, fixed temperature BCs, the tem-
perature scale should be something like [𝑇 ] = 𝐿𝑑𝑇𝑜/𝑑𝑟.

[ ]: #######################
import numpy

(continues on next page)
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import matplotlib.pyplot as plt
from matplotlib.pyplot import plot, draw, show

import os, sys
sys.path.insert(0, os.path.abspath('../../'))

import post_processing.reference_tools as rt # You will need the refernce_tools.
→˓py to run this notebook

[ ]: # Grid Parameters
nr = 500 # Number of radial points
ri = 0.7e0 # Inner boundary of radial domain
ro = 1.0e0 # Outer boundary of radial domain

# radial grid
r=numpy.linspace(ri,ro,nr)

#aspect ratio
beta=ri/ro

# shell depth depending on the non-dimensionalization
d=1.e0

#non-dimensional r_i
ri_nd=beta*d/(1-beta)

#non-dimensional r_o
ro_nd=d/(1-beta)

#non-dimensional radial grid
radius1=numpy.linspace(ri_nd,ro_nd,nr)
print(ri_nd,ro_nd)
#print(radius1[0],radius1[nr-1])

[ ]: ones = numpy.ones(nr,dtype='float64')
zeros = numpy.zeros(nr,dtype='float64')

# Here we define the reference state i.e. density, temperature,etc.
# For a classic RBC setup, this is the reference state to be used.

density = ones # density rho
(continues on next page)
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dlnrho= zeros # dlnrho/dr
d2lnrho= zeros # d^2lnrho/dr^2
temperature=ones # temperature T
dlnt=zeros # dlnT/dr
pressure=ones # pressure P
entropy = zeros # entropy S, not used in Boussinesq -- set it = 0
gravity=zeros # gravity -- it is part of the buoyancy term in the non-
→˓dimensional momentum equation (see notes above)
hprofile=zeros # heating function (if we want one)
dsdr=zeros # dS/dr -- not useful in Boussinesq -- set it = 0

[ ]: my_ref = rt.equation_coefficients(radius1)

[ ]: ## Here we define all the functions and constants that will be written in our␣
→˓data file and
## read by Rayleigh if we choose the custom reference state (=4). For more info,␣
→˓check notes above!
## Also, chech main_input_Boussinesq to see how to run a simulation with␣
→˓Rayleigh and this custom
## reference state ( "Boussinesq.dat" input file generated below!)

unity = numpy.ones(nr,dtype='float64')
gravity_power=0.0
buoy = (radius1[nr-1]/radius1)**gravity_power # buoyancy term calculation
my_ref.set_function(density,1) # denisty rho
my_ref.set_function(buoy,2) # buoyancy term
my_ref.set_function(unity,3) # nu(r) -- can be overwritten via nu_type in␣
→˓Rayleigh
my_ref.set_function(temperature,4) # temperature T
my_ref.set_function(unity,5) # kappa(r) -- works like nu
my_ref.set_function(hprofile,6) # heating function
my_ref.set_function(dlnrho,8) # dlnrho/dr
my_ref.set_function(d2lnrho,9) # d^2lnrho/dr^2
my_ref.set_function(dlnt,10) # dlnT/dr
my_ref.set_function(unity,7) # eta -- works like nu and kappa
my_ref.set_function(dsdr,14) # This is not used in Boussinesq -- set it = 0

# The constants can all be set/overridden in the input file
# NOTE that they default to ZERO, but we want
# most of them to be UNITY. These constants will explicitly depend on the non-
→˓dimensionalization chosen.

# The comments corresponding to each one of the constants are generic but here,␣
→˓we also specify

(continues on next page)
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# what they are exactly in our example which is based on the non-
→˓dimensionalization used in this notebook!

## This is a non-magnetic example with Pr=1, E=0.001, and Ra=10^6, such that␣
→˓Ra*=1 !
my_ref.set_constant(2.0,1) # multiplies the Coriolis term, here it is: 2
my_ref.set_constant(1.0,2) # multiplies the buoyancy, here it is Ra*=Ra.E^2/Pr␣
→˓as defined above
my_ref.set_constant(1.0,3) # multiplies the pressure gradient
my_ref.set_constant(0.0 , 4) # multiplies the lorentz force, here it is: E/
→˓(4*pi*Pm)
my_ref.set_constant(0.001e0,5) # multiplies the viscosity, here it is: E
my_ref.set_constant(0.001e0,6) # multiplies the entropy diffusion (kappa), here␣
→˓it is: E/Pr
my_ref.set_constant(0.0,7) # multiplies eta in induction equation, here it is E/
→˓Pm
my_ref.set_constant(0.0,8) # multiplies viscous heating, here it is always 0,␣
→˓since we assume the Boussinesq approximation
my_ref.set_constant(1.0,9) # multiplies ohmic heating, here it is always 0,␣
→˓since we assume the Boussinesq approximation
my_ref.set_constant(1.0,10) # multiplies the heating, here it is 0, since we␣
→˓have assumed that there is no heating function!
my_ref.write('Boussinesq.dat') # Here we write our data file to be used to run␣
→˓our simulation with Rayleigh!
print(my_ref.fset)
print(my_ref.cset)

[ ]:

[ ]:

Boussinesq dynamo: nondimensionalized using viscous timescale

[ ]: '''

This code provides an example for using a custom non-dimensionalization
of Rayleigh in Boussinesq dynamo mode.

The non-dimensionalization used here is based on the Rayleigh default
viscous diffusion scaling for convection, thus providing a check
on the custom reference state.

The parameters correspond to a case listed in Table 2 of
(continues on next page)
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Soderlund et al.: "The influence of magnetic fields in planetary
dynamo models", Earth Planet. Sci. Lett., v.333-334, p.9-20 (2012)

The numbers referenced below for the various functions and constants
refer to equation (5) in "Rayleigh_Output_Variables.pdf". Please refer to
that document for further details.

Requirements: (1) "rayleigh_diagnostics.py" ; and (2) "reference_tools.py"

'''

import numpy as np

import os, sys
sys.path.insert(0, os.path.abspath('../../'))

import post_processing.reference_tools as rt

# name of output file containing custom reference data
filename = 'custom_ref_viscous.dat'

[ ]: # Non-dimensional input parameters

Ra = 1.12e5 # Rayleigh number
Pr = 1.0 # Prandtl number
Ek = 2.0e-3 # Ekman number
Pm = 5.0 # Magnetic Prandtl number
beta = 0.4 # Aspect ratio = r_inner/r_outer
gravity_power = 1.0 # power law variation of gravitational acceleration

[ ]: # Create radial grid

# Numer of radial grid points for radial functions (f_1, f_2, etc.)
# Make large enough for accurate interpolation onto Chebyshev grid
nr = 2000

# non-dimensional r_inner
ri = beta/(1-beta)

# non-dimensional r_outer
ro=1.0/(1-beta)

# non-dimensional radial grid
(continues on next page)
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radius=np.linspace(ri,ro,nr)

[ ]: # Define the reference state functions and constants

ones = np.ones(nr,dtype='float64')
zeros = np.zeros(nr,dtype='float64')

# the function list below is default for Boussinesq
f_1 = ones
f_2 = (radius/radius[nr-1])**gravity_power
f_3 = ones
f_4 = ones
f_5 = ones
f_6 = zeros
f_7 = ones
f_8 = zeros
f_9 = zeros
f_10 = zeros
f_11 = zeros
f_12 = zeros
f_13 = zeros

c_1 = 2.0/Ek # Coriolis force
c_2 = Ra/Pr # Buoyancy force
c_3 = 1.0/Ek # Pressure gradient
c_4 = 1.0/(Ek*Pm) # Lorentz force
c_5 = 1.0 # Viscous force
c_6 = 1.0/Pr # Thermal diffusion
c_7 = 1.0/Pm # Ohmic diffusion
c_8 = 0.0 # Viscous heating
c_9 = 0.0 # Ohmic heating
c_10 = 0.0 # Internal heating

[ ]: # Set all of the functions and constants

my_ref = rt.equation_coefficients(radius)

# Set functions here
my_ref.set_function(f_1, 1)
my_ref.set_function(f_2, 2)
my_ref.set_function(f_3, 3)
my_ref.set_function(f_4, 4)
my_ref.set_function(f_5, 5)

(continues on next page)
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my_ref.set_function(f_6, 6)
my_ref.set_function(f_7, 7)
my_ref.set_function(f_8, 8)
my_ref.set_function(f_9, 9)
my_ref.set_function(f_10, 10)
my_ref.set_function(f_11, 11)
my_ref.set_function(f_12, 12)
my_ref.set_function(f_13, 13)

# Set constants here
my_ref.set_constant(c_1, 1)
my_ref.set_constant(c_2, 2)
my_ref.set_constant(c_3, 3)
my_ref.set_constant(c_4, 4)
my_ref.set_constant(c_5, 5)
my_ref.set_constant(c_6, 6)
my_ref.set_constant(c_7, 7)
my_ref.set_constant(c_8, 8)
my_ref.set_constant(c_9, 9)
my_ref.set_constant(c_10, 10)

my_ref.write(filename)

print('Custom reference file', filename, 'was written successfully.')

[ ]:

Custom reference state for the dimensional anelastic MHD formulation in a convective
spherical shell based on polytropes

Problem Setup

We define the reference state of the convective region based on a polytrope that has a form given by

𝜌 = 𝜌0𝑧
𝑛,

𝑃 = 𝑃0𝑧
𝑛+1,

and

𝑇 = 𝑇0𝑧,

where 𝜌, 𝑃 , and 𝑇 are the density, pressure, and temperature respectively, and where the polytropic variable
𝑧 is an as-of-yet undetermined function of radius. We further assume that these quantities are related by the
ideal gas law, with

𝑃 = 𝑅𝜌𝑇 ,
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where 𝑅 is the gas constant. It is related to the specific heats at constant pressure (𝑐𝑝) and contant volume
(𝑐𝑣) through the relation

𝑅 = 𝑐𝑝 − 𝑐𝑣 = 𝑐𝑝(1 − 1
𝛾 ),

with

𝛾 ≡ 𝑐𝑝
𝑐𝑣

.

For a monotomic ideal gas, we have that

𝛾 ≡ 5
3 .

Finally, we require that the polytrope satisfies hydrostatic balance. Namely,

𝜌𝐺𝑀
𝑟2

= −𝜕𝑃
𝜕𝑟 ,

where 𝐺 is the gravitational constant, and 𝑀 is the mass of the star.

Polytropic Solution

Substituting our relations for 𝑃 , 𝜌, and 𝑇 into the equation of hydrostatic balance, we arive at
𝜕𝑧
𝜕𝑟 = − 𝐺𝑀

(𝑛+1)𝑅𝑇0𝑟2
= − 2𝐺𝑀

5(𝑛+1)𝑐𝑝𝑇0𝑟2
.

This motivates us to seek a form for 𝑧 of

𝑧 = 𝑎 + 𝑏
𝑟 ,

and immediately, we see that b must be given by

𝑏 = 2𝐺𝑀
5(𝑛+1)𝑐𝑝𝑇0

.

Note that while 𝑇0 remains undetermined, we can now compute 𝜕𝑇/𝜕𝑟. In order to determine 𝑎, we need one
more constraint. In our case, we will specify the number of density scaleheights, 𝑁𝜌, across the convection
zone. We denote the top of the convection zone by a subscript 𝑡 and the base of the convection zone by a
subscript 𝑏. We then have 𝑁𝜌 = 𝜌𝑏

𝜌𝑡
=

𝑧𝑛𝑏
𝑧𝑛𝑡

,

or equivalently, using 𝐶 to denote the exponential factor, and 𝛽 ≡ 𝑟𝑏
𝑟𝑡

, we have

𝐶 ≡ 𝑒
𝑁𝜌
𝑛 = 𝑎+𝑏/𝑟𝑏

𝑎+𝑏/𝑟𝑡
.

Rearranging, we find our expression for 𝑎

𝑎 = 𝑓𝑏
𝑟𝑏

,

where

𝑓 ≡ 𝛽𝐶−1
1−𝐶 .

This yields our expression for 𝑧 in terms of 𝑇0

𝑧 = 𝑏(1𝑟 + 𝑓
𝑟𝑏

) = 2𝐺𝑀
5(𝑛+1)𝑐𝑝𝑇0

(︁
1
𝑟 + 𝑓

𝑟𝑏

)︁
.

Factors of 𝑇0 cancel out, when calculating the temperature, leaving us with a complete description of its
functional form. We are free to choose any value of 𝑇0 as a result; we use 𝑇𝑏, the temperature at the base of
the convection zone. We have that

𝑇0 = 𝑇𝑏 = 2𝐺𝑀
5(𝑛+1)𝑐𝑝

(︁
1+𝑓
𝑟𝑏

)︁
,

completing our description of z. Values for 𝜌0 and 𝑃0 can now similarly be computed by enforcing the value
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of 𝜌 and 𝑃 as a particular point. As with 𝑇 , we choose the base of the convection zone in the code that
follows.

[ ]: #######################
import numpy
import matplotlib.pyplot as plt
from matplotlib.pyplot import plot, draw, show

import os, sys
sys.path.insert(0, os.path.abspath('../../'))

import post_processing.reference_tools as rt # You will need the refernce_tools.
→˓py to run this notebook
import post_processing.rayleigh_diagnostics as rdiag

[ ]: # Grid Parameters
# Here, we use solar values as an example

nr = 512 # Number of radial points
ri = 5e10 # Inner boundary of radial domain
ro = 6.586e10 # Outer boundary of radial domain
rcz = 5e10 # base of the CZ

#apsect ratio
beta=ri/ro

#Polytrope Parameters
ncz = 1.5 # polytropic index of convection zone
nrho = 3. # number of density scaleheights across convection zone (not␣
→˓full domain)
mass = 1.98891e33 # Mass of the star
G = 6.67e-8 # gravitational constant
rhoi = 0.18053428 # density at the base of convection zone
cp = 3.5e8 # specific heat at constant pressure
gamma = 5.0/3.0 # Ratio of specific heats for ideal gas

lsun = 3.846e33 # solar luminosity for scaling the volumetric heating

[ ]: radius = numpy.linspace(ri,ro,nr) #Radial domain of the CZ

[ ]: #Compute a CZ polytrope (see reference_tools)

poly1 = rt.gen_poly(radius,ncz,nrho,mass,rhoi,G,cp,rcz)
gas_constant = cp*(1.0-1.0/gamma) # R

(continues on next page)
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temperature= poly1.temperature # temperature T
density = poly1.density # density rho
pressure = poly1.pressure # pressure P, this won't matter -- set it equal to␣
→˓something
dsdr = poly1.entropy_gradient # dS/dr
entropy= poly1.entropy # entropy S, this won't matter -- set it equal to something
dpdr = poly1.pressure_gradient # dP/dr
gravity= mass*G/radius**2 # gravity g

[ ]: # Calculation of the first and second derivative of lnrho and the first␣
→˓derivative of lnT.
# If we do not calculate those here, then they are calculated within Rayleigh!

d_density_dr = numpy.gradient(density,radius, edge_order=2)
dlnrho = d_density_dr/density
d2lnrho = numpy.gradient(dlnrho,radius, edge_order=2)
dtdr = numpy.gradient(temperature,radius, edge_order =2)
dlnt = dtdr/temperature

[ ]: # Plots of the dimensional reference state profiles, i.e. the density profile,␣
→˓the temperature profile, etc.

fig, ax = plt.subplots(nrows =3,ncols = 3, figsize=(15,10) )
ax[0][0].plot(radius,density,'r')
ax[0][0].set_xlabel('Radius')
ax[0][0].set_ylabel('Density')

ax[0][1].plot(radius,entropy)
ax[0][1].set_xlabel('Radius')
ax[0][1].set_ylabel('Entropy')

ax[0][2].plot(radius,temperature)
ax[0][2].set_xlabel('Radius')
ax[0][2].set_ylabel('Temperature')

ax[1][0].plot(radius,dsdr)
ax[1][0].set_xlabel('Radius')
ax[1][0].set_ylabel('Entropy Gradient')

ax[1][1].plot(radius,pressure)
ax[1][1].set_xlabel('Radius')
ax[1][1].set_ylabel('Pressure')

ax[1][2].plot(radius,gravity)
ax[1][2].set_xlabel('Radius')

(continues on next page)
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ax[1][2].set_ylabel('Gravity')

ax[2][0].plot(radius,dlnrho)
ax[2][0].set_xlabel('Radius')
ax[2][0].set_ylabel('dlnrho')

ax[2][1].plot(radius,d2lnrho)
ax[2][1].set_xlabel('Radius')
ax[2][1].set_ylabel('d2lnrho')

ax[2][2].plot(radius,dlnt)
ax[2][2].set_xlabel('Radius')
ax[2][2].set_ylabel('dlnt')

plt.tight_layout()

plt.show()

[ ]: # Calculation of the heating profile based on the pressure, if we want to have a␣
→˓heating function in our setup.

hprofile = numpy.zeros(nr,dtype='float64')
hprofile[:] = pressure[:]

#################################################################
# We normalize the heating function so that it integrates to 1.

integrand= numpy.pi*4*radius*radius*hprofile
hint = numpy.trapz(integrand,x=radius)
hprofile = hprofile/hint
#plt.plot(radius,hprofile)
plt.plot(radius, hprofile*lsun)

[ ]: my_ref = rt.equation_coefficients(radius)

[ ]: # Here we define all the functions and constants that will be written in our␣
→˓data file and
# read by Rayleigh if we choose the custom reference state (=4)

unity = numpy.ones(nr,dtype='float64')
buoy =density*gravity/cp # calculation of the buoyancy term used in the momentum␣
→˓equation

my_ref.set_function(density,1) # density rho
(continues on next page)
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my_ref.set_function(buoy,2) # buoyancy term
my_ref.set_function(unity,3) # nu(r) -- can be overwritten via nu_type in␣
→˓Rayleigh
my_ref.set_function(temperature,4) # temperature T
my_ref.set_function(unity,5) # kappa(r) -- works like nu
my_ref.set_function(hprofile,6) # heating -- this is normalized to one

my_ref.set_function(dlnrho,8) # dlnrho/dr
my_ref.set_function(d2lnrho,9) # d^2lnrho/dr^2
my_ref.set_function(dlnt,10) # dlnT/dr
my_ref.set_function(unity,7) # eta -- works like nu and kappa -- magnetic␣
→˓diffusivity
my_ref.set_function(dsdr,14) # dS/dr

# The constants can all be set/overridden in the input file
# NOTE that they default to ZERO, but we want
# most of them to be UNITY.
# These aren't very useful in the dimensional anelastic formulation but are VERY␣
→˓useful
# for the non-dimensional version of the anelastic custom reference state!

my_ref.set_constant(1.0,1) # multiplies the Coriolis force--Should be 2 Omega␣
→˓(complication here)
my_ref.set_constant(1.0,2) # multiplies buoyancy
my_ref.set_constant(1.0,3) # multiplies pressure gradient
my_ref.set_constant(0.0,4) # multiplies lorentz force
my_ref.set_constant(1.0,5) # multiplies viscosity
my_ref.set_constant(1.0,6) # multiplies entropy diffusion (kappa)
my_ref.set_constant(0.0,7) # multiplies eta in induction equation
my_ref.set_constant(1.0,8) # multiplies viscous heating
my_ref.set_constant(1.0,9) # multiplies ohmic heating
my_ref.set_constant(lsun,10) # multiplies the heating (if normalized to 1, this␣
→˓should be the luminosity)
my_ref.write('dimensional.dat') # Here we write our data file to be used to run␣
→˓our simulation with Rayleigh!
print(my_ref.fset)
print(my_ref.cset)

[ ]: # Once you've run for one time step, set have_run = True !!

# Here we check if the output reference state is the same as the one we used as␣
→˓an input (sanity check)

# NOTE: We need the output file "equation_coefficients" to run this, as well as␣
→˓the PDE_Coefficients

(continues on next page)
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# from rayleigh_diagnostics.py

try:
cref = rdiag.PDE_Coefficients() # This will give us the output reference␣

→˓state
have_run = True

except:
have_run = False

if (have_run):

fig, ax = plt.subplots(ncols=3,nrows=4, figsize=(16,4*4))
# density, derivatives of lnrho
ax[0][0].plot(cref.radius,cref.density,'yo')
ax[0][0].plot(radius,density)
ax[0][0].set_xlabel('Radius (cm)')
ax[0][0].set_title('Density')

ax[0][1].plot(cref.radius, cref.dlnrho,'yo')
ax[0][1].plot(radius, dlnrho)
ax[0][1].set_xlabel('Radius (cm)')
ax[0][1].set_title('Log density gradient')

ax[0][2].plot(cref.radius,cref.d2lnrho,'yo')
ax[0][2].plot(radius,d2lnrho)
ax[0][2].set_xlabel('Radius (cm)')
ax[0][2].set_title('d_dr{Log density gradient}')

# temperature and derivative of lnT
ax[1][0].plot(cref.radius,cref.temperature,'yo')
ax[1][0].plot(radius,temperature)
ax[1][0].set_xlabel('Radius (cm)')
ax[1][0].set_title('Temperature')

ax[1][1].plot(cref.radius, cref.dlnT,'yo')
ax[1][1].plot(radius, dlnt)
ax[1][1].set_xlabel('Radius (cm)')
ax[1][1].set_title('Log temperature gradient')

# entropy gradient
ax[2][1].plot(cref.radius, cref.dsdr,'yo')
ax[2][1].plot(radius, dsdr,'b')
ax[2][1].set_xlabel('Radius (cm)')
ax[2][1].set_title('Entropy gradient')

# Note that you must build the buoyancy term from the functions/constants
(continues on next page)
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ax[3][1].plot(cref.radius, cref.functions[:,1]*cref.constants[1],'yo')
ax[3][1].plot(radius, gravity*density/cp)
ax[3][1].set_xlabel('Radius (cm)')
ax[3][1].set_title('Buoyancy')

# Note that the output heating (cref.heating) is hprofile/density/
→˓temperature*luminosity

ax[3][2].plot(cref.radius, cref.heating*cref.rho*cref.T,'yo')
ax[3][2].plot(radius, hprofile*lsun)
ax[3][2].set_xlabel('Radius (cm)')
ax[3][2].set_title('Heating')

plt.tight_layout()
plt.show()

[ ]:

Custom reference state for non-dimensional anelastic MHD formulation in a convective
spherical shell

We non-dimensionalize the dimensional anelastic MHD equations (see Rayleigh documentation for the full
set of equations, and the definitions of the variables and parameters used here) using the width of the convec-
tion zone [𝑙] = 𝐿 = 𝑟𝑜−𝑟𝑐𝑧 as the lengthscale (where 𝑟𝑜 is the outer radius and 𝑟𝑐𝑧 is the radius at the bottom
of the convection zone (CZ)), the viscous timescale [𝑡] = 𝐿2/𝜈, and the velocity scale [𝑢] = 𝜈/𝐿. For the
density and temperature scales, we choose [𝜌] = 𝜌, and [𝑇 ] = 𝑇 , respectively, where the tildes correspond
to the volume average of the respective quantity such that 𝑞 =

1

𝑉

∫︀
𝑉 𝑞𝑑𝑉 , where 𝑉 is the volume of the

convective region of the spherical shell (and 𝑞 → 𝜌, 𝑇 ). For the magnetic field, we use [𝐵] =
√
𝜌𝜇𝜂Ω𝑜 and

finally for the entropy 𝑆 we use a scaling related to the thermal energy flux 𝐹 such that [𝑆] =
𝐿𝐹

𝜌𝑇𝜅
. Then,

we can write the non-dimensional anelastic MHD equations as:

𝜕𝑢⃗

𝜕𝑡
+ 𝑢⃗ · ∇𝑢⃗ +

1

E
2𝑧 × 𝑢⃗ =

Ra

Pr

𝑔(𝑟)

𝑔
𝑆𝑟 −∇(𝑝/𝜌) +

1

𝜌
∇ · 𝐷⃗ +

1

4𝜋𝜌

1

PmE
(∇× 𝐵⃗) × 𝐵⃗. (1.32)

∇ · (𝜌𝑢⃗) = 0, (1.33)

∇ · 𝐵⃗ = 0. (1.34)

𝜌𝑇

(︂
𝑑𝑆

𝑑𝑡
+ 𝑢⃗ · ∇𝑆

)︂
=

1

Pr
∇ · (𝜌𝑇∇𝑆) +

1

Pr
𝑄𝑛𝑑 +

DiPr

Ra
Φ +

1

4𝜋

DiPr

EP2
mRa

|∇ × 𝐵⃗|2, (1.35)
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where 𝑄𝑛𝑑 =
𝐿

𝐹
𝑄, and

𝜕𝐵⃗

𝜕𝑡
−∇× (𝑢⃗× 𝐵⃗) = −∇×

(︂
1

Pm
∇× 𝐵⃗

)︂{︂
=

1

Pm
∇2𝐵⃗

}︂
, (1.36)

where we have assumed that 𝜅, 𝜈 and 𝜂 are constants. We now have five non-dimensional numbers: the flux
Rayleigh number Ra, the Prandtl number Pr, the magnetic Prandtl number Pm, the Ekman number E and the

dissipation number Di, which are defined respectively as: Ra =
𝑔𝐹𝐿4

𝑐𝑝𝜌𝑇𝜅2𝜈
, Pr =

𝜈

𝜅
, Pm =

𝜈

𝜂
, E =

𝜈

Ω𝑜𝐿2
, and Di =

𝑔𝐿

𝑐𝑝𝑇
. Then the functions 𝑓 are:

𝑓1(𝑟) → 𝜌,

𝑓2(𝑟) → 𝜌𝑔(𝑟)/𝑔,

𝑓3(𝑟) → 1,

𝑓4(𝑟) → 𝑇 ,

𝑓5(𝑟) → 1,

𝑓6(𝑟) → 𝑄𝑛𝑑(𝑟),

𝑓7(𝑟) → 1,

and the constants are

𝑐1 → 2/E,

𝑐2 → Ra/Pr,

𝑐3 → 1,

𝑐4 →
1

4𝜋

1

PmE
,

𝑐5 → 1,

𝑐6 → 1/Pr,

𝑐7 → 1/Pm,

𝑐8 → DiPr/Ra,

𝑐9 →
1

4𝜋

DiPr

EP2
mRa

, and

𝑐10 →
1

Pr
.

The non-dimensional reference density and temperature profiles are equal to their dimensional profile divided
by its volume average in the CZ, i.e. 𝜌 = 𝜌𝑑𝑖𝑚/𝜌, and 𝑇 = 𝑇𝑑𝑖𝑚/𝑇 .

Note that the reference state is based on a polytrope, similarly to the dimensional case. For more info on that,
check the dimensional anelastic notebook version!

[ ]: #######################
import numpy
import matplotlib.pyplot as plt
from matplotlib.pyplot import plot, draw, show

(continues on next page)
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import os, sys
sys.path.insert(0, os.path.abspath('../../'))

import post_processing.reference_tools as rt # You will need the refernce_tools.
→˓py to run this notebook
import post_processing.rayleigh_diagnostics as rdiag

[ ]:
# Grid Parameters
nr = 512 # Number of radial points
ri = 5e10 # Inner boundary of radial domain
ro = 6.586e10 # Outer boundary of radial domain
rcz = 5e10 # Base of the CZ

# apsect ratio
beta=ri/ro

# shell depth according to non-dimensionalization
d=1.e0

## In the main_input file, we should use the following radial boundaries or else␣
→˓set the right aspect ratio and shell depth

ri_nd=beta*d/(1-beta) # non-dimensional inner boundary

ro_nd=d/(1-beta) # non-dimensional outer boundary

print(ri_nd,ro_nd)

# Polytrope Parameters
# In this example, we use solar values

ncz = 1.5 # polytropic index of convection zone
nrho = 3. # number of density scaleheights across convection zone (not␣
→˓full domain)
mass = 1.98891e33 # Mass of the star
G = 6.67e-8 # gravitational constant
rhoi = 0.18053428 # density at the base of convection zone
cp = 3.5e8 # specific heat at constant pressure
gamma = 5.0/3.0 # Ratio of specific heats for ideal gas

[ ]: # Define the Radial Grid
(continues on next page)
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radius = numpy.linspace(ri,ro,nr) # Full domain radial grid for␣
→˓reference state

[ ]: #Compute CZ polytrope -- see reference_tools.py script

poly1 = rt.gen_poly(radius,ncz,nrho,mass,rhoi,G,cp,rcz)
gas_constant = cp*(1.0-1.0/gamma) # R

#Dimensional profiles for reference state functions
temperature1 = poly1.temperature # T
density1 = poly1.density # rho
pressure1 = poly1.pressure # P
dsdr1 = poly1.entropy_gradient # dS/dr
s1= poly1.entropy # S
dpdr1 = poly1.pressure_gradient # dP/dr
gravity1= mass*G/radius**2 # g

# We use the volume average of rho,T and g in the CZ to non-dimensionalize our␣
→˓reference state functions
def vol_av(f,radius):

int1=radius**2.
int2=f*radius**2.
vol = numpy.trapz(int1,x=radius)
f_av1 = numpy.trapz(int2,x=radius)
f_av=f_av1/vol
return f_av

temperature_av=vol_av(temperature1,radius) # CZ volume average of T
density_av=vol_av(density1,radius) # CZ volume average of rho
gravity_av=vol_av(gravity1,radius) # CZ volume average of g

print(temperature_av,density_av,gravity_av)

# Here we define the non-dimensional T, rho, g, S, r, dS/dr and P

# The non-dimensional temperature: T=T_dimensional/T_av
temperature=temperature1/temperature_av

# The non-dimensional density: rho=rho_dimensional/rho_av
density=density1/density_av

# The non-dimensional gravity: g=g_dimensional/g_av
(continues on next page)
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gravity=gravity1/gravity_av

# Here we define our non-dimensional radius
radius1=radius/(ro-ri) # OR: radius1=numpy.linspace(ri_nd,ro_nd,nr)

#The pressure profile won't matter, we set it equal to rho*T as a reference
pressure=temperature*density

# For a purely convective region, we use dS/dr=0
dsdr=dsdr1

# Entropy won't matter, set it to something-- here I use the non-dimensional S i.
→˓e. S_nondim=[S_dim*(L^3*g_av)]/Ra*cp*kappa*nu]
entropy=numpy.ones(len(radius))*s1*(1.586e10**3.*gravity_av)/(13303.
→˓43109666924*cp*(8e12)**2)

[ ]: # Here we calculate the derivatives of lnrho and lnT based on the non-
→˓dimensional radius1, since
# we want their non-dimensional profiles

d_density_dr = numpy.gradient(density,radius1, edge_order=2)
dlnrho = d_density_dr/density
d2lnrho = numpy.gradient(dlnrho,radius1, edge_order=2)
dtdr = numpy.gradient(temperature,radius1, edge_order =2)
dlnt = dtdr/temperature

### Here, we plot our non-dimensional profiles for our reference state functions,
→˓ i.e. for rho, T, etc.

fig, ax = plt.subplots(nrows =3,ncols = 3, figsize=(15,10) )

ax[0][0].plot(radius1,density,'r')
ax[0][0].set_xlabel('Radius')
ax[0][0].set_ylabel('Density')

ax[0][1].plot(radius1,entropy)
ax[0][1].set_xlabel('Radius')
ax[0][1].set_ylabel('Entropy')

ax[0][2].plot(radius1,temperature)
ax[0][2].set_xlabel('Radius')

(continues on next page)
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ax[0][2].set_ylabel('Temperature')

ax[1][0].plot(radius1,dsdr)
ax[1][0].set_xlabel('Radius')
ax[1][0].set_ylabel('Entropy Gradient')

ax[1][1].plot(radius1,pressure)
ax[1][1].set_xlabel('Radius')
ax[1][1].set_ylabel('Pressure')

ax[1][2].plot(radius1,gravity)
ax[1][2].set_xlabel('Radius')
ax[1][2].set_ylabel('Gravity')

ax[2][0].plot(radius1,dlnrho)
ax[2][0].set_xlabel('Radius')
ax[2][0].set_ylabel('dlnrho')

ax[2][1].plot(radius1,d2lnrho)
ax[2][1].set_xlabel('Radius')
ax[2][1].set_ylabel('d2lnrho')

ax[2][2].plot(radius1,dlnt)
ax[2][2].set_xlabel('Radius')
ax[2][2].set_ylabel('dlnt')

plt.tight_layout()

plt.show()
print(density[0],temperature[0])

[ ]: ## This is where we define a heating function, if we want one in our model.

# Units are energy / volume / time such that {rho_hat T_hat dS/dt} = hprofile(r)

hprofile = numpy.zeros(nr,dtype='float64')
hprofile[:] = pressure1[:]

# Next, we need to integrate the heating profile
# We normalize it such that its integral over the volume is 1
# This way, we can set the luminosity via a constant in the input file for the␣
→˓dimensional case!

integrand= numpy.pi*4*radius*radius*hprofile
(continues on next page)
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hint = numpy.trapz(integrand,x=radius)
hprofile = hprofile/hint

###########################################################
# Plot the integrated luminosity as a function of radius
# (should integrate to 1 at r = r_top)
###########################################################

# We then need to calculate the non-dimensional heating function

lq1 = numpy.zeros(nr)
lq1[0]=0
lq2 = numpy.zeros(nr)
lq2[0]=0
lq3 = numpy.zeros(nr)
lq3[0]=0

lsun= 3.846e33 # solar luminosity
integrand1= lsun*radius*radius*hprofile # Luminosity*r^2*heating
for i in range(1,nr):

lq1[i] =(1/(radius[i]**2.))*numpy.trapz(integrand1[0:i+1],x=radius[0:i+1])

integrand2=4*numpy.pi*radius**2.
lq2= numpy.trapz(integrand2,x=radius)
integrand3=lq1*4*numpy.pi*radius**2.
lq3=numpy.trapz(integrand3,x=radius)/lq2 # That is the volume Flux F_tilde

# The non-dimensional heating profile is hprofile_nd = lsun*hprofile*L/F_
→˓tilde=Q_dim*(r_o-r_cz)/F_tilde
hprofile_nd=lsun*hprofile*(ro-ri)/lq3
#print((ro-ri)/lq3) # This comes out of the non-dimensionalization used (L/F_
→˓tilde)

nu=8.e12
kappa=8.e12

Ra=gravity_av*lq3*(ro-ri)**4./(cp*density_av*temperature_av*nu*kappa**2.) # Ra␣
→˓is defined earlier in the notes
Di=gravity_av*(ro-ri)/(cp*temperature_av) # Dissipation number is defined in the␣
→˓notes above
print(Ra,Di/Ra)

(continues on next page)
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fig, ax = plt.subplots(ncols=2,figsize=(12,4))

ax[0].plot(radius1,hprofile_nd,'ob')
ax[0].set_title('Non-Dimensional Heating Profile')
ax[0].set_xlabel('Radius')

ax[1].plot(radius,hprofile,'.b')
ax[1].set_xlabel('Radius (cm)')
ax[1].set_title('Dimensional Heating Profile')
plt.show()

[ ]: # Have everything in terms of the non-dimensional radius
my_ref = rt.equation_coefficients(radius1)

[ ]: # Here we define all the functions and constants that will be written in our␣
→˓data file and
# read by Rayleigh if we choose the custom reference state (=4)

unity = numpy.ones(nr,dtype='float64')
buoy =density*gravity # buoyancy term calculation

my_ref.set_function(density,1) # density rho
my_ref.set_function(buoy,2) # buoyancy term
my_ref.set_function(unity,3) # nu(r) -- can be overwritten via nu_type in␣
→˓Rayleigh
my_ref.set_function(temperature,4) # temperature T
my_ref.set_function(unity,5) # kappa(r) -- works like nu
my_ref.set_function(hprofile_nd,6) # heating profile

my_ref.set_function(dlnrho,8) # dlnrho/dr
my_ref.set_function(d2lnrho,9) # d^2lnrho/dr^2
my_ref.set_function(dlnt,10) # dlnT/dr
my_ref.set_function(unity,7) # eta -- works like nu and kappa
my_ref.set_function(dsdr,14) # dS/dr

# The constants can all be set/overridden in the input file
# NOTE that they default to ZERO, but we want
# most of them to be UNITY. These constants will explicitly depend on the non-
→˓dimensionalization chosen.

# The comments corresponding to each one of the constants are generic but we␣
→˓also specify
# what they are exactly in our example here, assuming the non-dimensionalization␣
→˓we used. (continues on next page)
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# This is a non-magnetic, non-rotating example that reproduces the results from␣
→˓Featherstone & Hindman (2016)
# for the case with Nrho=3,and kappa=nu=8e12

my_ref.set_constant(1.0,1) # multiplies the Coriolis force, here it is: 2/E
my_ref.set_constant(13303.43109666924,2) # multiplies buoyancy -- Ra/Pr here
my_ref.set_constant(1.0,3) # multiplies the pressure gradient
my_ref.set_constant(0.0 , 4) # multiplies the lorentz force, here it is: (1/
→˓(4*pi)*1/(Pm*E))
my_ref.set_constant(1.0,5) # multiplies viscosity
my_ref.set_constant(1.0,6) # multiplies entropy diffusion , here it is 1/Pr
my_ref.set_constant(0.0,7) # multiplies magnetic diffusion in induction␣
→˓equation, here: 1/Pm
my_ref.set_constant(0.00012954929449971041,8) # multiplies viscous heating,␣
→˓here it is: Di*Pr/Ra
my_ref.set_constant(1.0,9) # multiplies ohmic heating, here it is: (1/
→˓(4*pi)*Di*Pr/(E*Pm^2*Ra))
my_ref.set_constant(1.0,10) # multiplies the heating function -- here it is 1/Pr␣
→˓(if normalized to 1, this is the luminosity)
my_ref.write('CZtest.dat') # Here we write our data file to be used to run our␣
→˓simulation with Rayleigh!
print(my_ref.fset)
print(my_ref.cset)

[ ]: # Once you've run for one time step, set have_run = True

# Here we check if the output reference state is the same as the one we used as␣
→˓an input (sanity check)!

# NOTE: We need the output file "equation_coefficients" to run this, as well as␣
→˓the PDE_Coefficients
# from rayleigh_diagnostics.py

try:
cref = rdiag.PDE_Coefficients()
have_run = True

except:
have_run = False

if (have_run):

fig, ax = plt.subplots(ncols=3,nrows=4, figsize=(16,4*4))

# Density and derivatives of lnrho
(continues on next page)
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ax[0][0].plot(cref.radius,cref.density,'yo')
ax[0][0].plot(radius1,density)
ax[0][0].set_xlabel('Radius')
ax[0][0].set_title('Density')

ax[0][1].plot(cref.radius, cref.dlnrho,'yo')
ax[0][1].plot(radius1, dlnrho)
ax[0][1].set_xlabel('Radius')
ax[0][1].set_title('Log density gradient')

ax[0][2].plot(cref.radius,cref.d2lnrho,'yo')
ax[0][2].plot(radius1,d2lnrho)
ax[0][2].set_xlabel('Radius')
ax[0][2].set_title('d_dr{Log density gradient}')

# Temperature and derivative of lnT
ax[1][0].plot(cref.radius,cref.temperature,'yo')
ax[1][0].plot(radius1,temperature)
ax[1][0].set_xlabel('Radius')
ax[1][0].set_title('Temperature')

ax[1][1].plot(cref.radius, cref.dlnT,'yo')
ax[1][1].plot(radius1, dlnt)
ax[1][1].set_xlabel('Radius')
ax[1][1].set_title('Log temperature gradient')

# dS/dr
ax[2][1].plot(cref.radius, cref.dsdr,'yo')
ax[2][1].plot(radius1, dsdr)
ax[2][1].set_xlabel('Radius')
ax[2][1].set_title('Entropy gradient')

# Buoyancy, Heating
# Note that you must build the buoyancy term from the functions/constants
ax[3][1].plot(cref.radius, cref.functions[:,1]*cref.constants[1],'yo')
ax[3][1].plot(radius1, gravity*density*Ra)
ax[3][1].set_xlabel('Radius')
ax[3][1].set_title('Buoyancy')

# Note that the output heating (cref.heating) is hprofile/density/temperature
ax[3][2].plot(cref.radius, cref.heating,'yo')
ax[3][2].plot(radius1, hprofile_nd/density/temperature)
ax[3][2].set_xlabel('Radius')
ax[3][2].set_title('Heating')

plt.tight_layout()
(continues on next page)
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plt.show()

[ ]:

[ ]:

An example for custom reference states from MESA

This script will take a MESA stellar evolution profile and convert it into a format that can be read in as a
custom reference state in Rayleigh. You will need the rayleigh_diagnostics.py, reference_tools.
py, and mesa.py files. You will also need a suitable MESA profile file, such as profile_mesa.data.

[ ]: import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate as spi
import scipy.integrate as spint
import scipy.signal as spsig
import sys, os

sys.path.insert(0, os.path.abspath('../../'))

import post_processing.rayleigh_diagnostics as rd
import post_processing.reference_tools as rt
import mesa
%matplotlib inline

[ ]: def interp(r, v):
prad = p.rmid[::-1] * mesa.rsol
#You can also use 10**p.logR[::-1] or p.radius[::-1] instead of rmid[::-1],␣

→˓but rmid is the most accurate choice
return np.interp(r, prad, v[::-1])

Set the work_dir variable to the location of the Python files listed above and MESA profile you would like
to use.

[ ]: work_dir = './'
sys.path.append(work_dir)

[ ]: p = mesa.profile('profile_mesa.data')

Choose a suitable number of radial grid points. They do not need to be regularly spaced. You should err on
the side of high resolution since Rayleigh’s Chebyshev domains have very fine grid spacing at the top and
bottom of the domain.
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[ ]: nr = 5000
r0 = 5.1e10 # in cm
r1 = 6.8e10 # in cm
radius = np.linspace(r0, r1, nr)

From the MESA model, Rayleigh will need the density, buoyancy function 𝜌𝑔/𝐶𝑃 , temperature, vicoscity,
thermal diffusion, electrical resistivity (for magnetic cases), heating profile (for cases with 𝑄 ̸= 0), entropy
gradient (for cases with reference state advection). Note that MESA radial indicies start at the bottom, while
Rayleigh radial indicies start at the top.

[ ]: r_MESA = p.rmid*mesa.rsol
density = interp(radius, 10**p.logRho)
temperature = interp(radius, 10**p.logT)
grav = interp(radius, p.grav)
cp = interp(radius, p.cp)
buoy = density * grav / cp
nu = 1e14 * np.ones_like(radius)
kappa = 1e14 * np.ones_like(radius)
eta = 1e14 * np.ones_like(radius)
hprofile = np.zeros_like(radius)
dsdr = np.zeros_like(radius)

WARNING You should be very careful how you think about the entropy gradient when moving from MESA
to Rayleigh due to the differing equations of state. Here we have chosen to simply set the reference state
entropy gradient to zero and let the convection establish it’s own entropy gradient. This may or may not be
satisfactory for your application.

ANOTHER WARNING You should be very careful with radiative luminosity and/or nuclear energy gener-
ation. There are a number of ways to compute the heating functions you need. For this example, we have
chosen to simply compute the luminosity profile needed for flux balance if the convective transport matches
the values from MESA.

[ ]: q_rad = -np.gradient((p.luminosity - p.conv_L_div_L*p.luminosity)*mesa.solarlum,␣
→˓r_MESA)/(4.0*np.pi*r_MESA**2)
heatingp = interp(radius, q_rad)
luminosity = np.trapz(4.0*np.pi*radius**2*heatingp, radius)
hprofile = heatingp/luminosity

Plot the density from MESA and the newly interpolated density that will be fed into Rayleigh to make sure
they are consistent. We also plot the heating profile as a sanity check.

[ ]: plt.plot(radius, density,'or')
plt.plot(p.rmid[::-1] * mesa.rsol, 10**p.logRho[::-1], '-b')
plt.xlabel('Radius (cm)')
plt.ylabel(r'Desnity (g/cm$^3$)')
plt.xlim([r0,r1])
plt.ylim([np.min(density), np.max(density)])
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[ ]: plt.plot(radius, luminosity*hprofile, '-r')
plt.xlabel('Radius (cm)')
plt.ylabel(r'$Q$ (erg/(cm$^3$ s))')

Now create the data structure that will be written to a file that Rayleigh can read, and then load in the needed
radial functions.

[ ]: my_ref = rt.equation_coefficients(radius)

my_ref.set_function(density,'density')
my_ref.set_function(buoy,'buoy')
my_ref.set_constant(1.0, 'buoy_fact')
my_ref.set_function(nu,'nu')
my_ref.set_constant(1.0, 'visc_fact')
my_ref.set_function(temperature,'temperature')
my_ref.set_function(kappa,'kappa')
my_ref.set_constant(1.0, 'diff_fact')
my_ref.set_constant(1.0, 'p_fact')
my_ref.set_function(hprofile,'heating')
my_ref.set_constant(1.0, 'luminosity')
my_ref.set_function(eta,'eta')
my_ref.set_constant(1.0, 'resist_fact')
my_ref.set_function(dsdr,'ds_dr')

my_ref.set_constant(luminosity,'luminosity')
print(my_ref.constants)

[ ]: file_write='cref_from_MESA.dat'
my_ref.write(file_write)

Now you can use this file to run a Rayleigh model. Once your Rayleigh model has run you can use
the equation_coefficients file to check how your specified reference state looks when transfered into
Rayleigh.

[ ]: #Once you're run for one time step, set have_run = True
radius1 = radius
gravity = grav
try:

cref = rd.PDE_Coefficients()
have_run = True

except:
have_run = False

if (have_run):

fig, ax = plt.subplots(ncols=3,nrows=3, figsize=(9,3*3))
# Density variables

(continues on next page)
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ax[0][0].plot(cref.radius,cref.density,'yo')
ax[0][0].plot(radius1,density)
ax[0][0].set_xlabel('Radius')
ax[0][0].set_title('Density')

ax[0][1].plot(cref.radius, cref.nu,'yo')
ax[0][1].plot(radius1, nu)
ax[0][1].set_xlabel('Radius')
ax[0][1].set_title(r'$\nu$')

ax[0][2].plot(cref.radius,cref.kappa,'yo')
ax[0][2].plot(radius1,kappa)
ax[0][2].set_xlabel('Radius')
ax[0][2].set_title(r'$\kappa$')

ax[1][1].plot(cref.radius,cref.temperature,'yo')
ax[1][1].plot(radius1,temperature)
ax[1][1].set_xlabel('Radius')
ax[1][1].set_title('Temperature')

''''
#Activate this if your case is magnetic
ax[1][0].plot(cref.radius, cref.eta,'yo')
ax[1][0].plot(radius1, eta)
ax[1][0].set_xlabel('Radius')
ax[1][0].set_title(r'$\eta$')
'''

ax[2][1].plot(cref.radius, cref.dsdr,'yo')
ax[2][1].plot(radius1, dsdr)
ax[2][1].set_xlabel('Radius')
ax[2][1].set_title('Log entropy gradient')

ax[1][2].plot(cref.radius, cref.functions[:,1]*cref.constants[1],'yo')
ax[1][2].plot(radius1, gravity*density/cp)
ax[1][2].set_xlabel('Radius')
ax[1][2].set_title('Gravity')

ax[2][0].plot(cref.radius, cref.heating*cref.rho*cref.T,'yo')
ax[2][0].plot(radius1, hprofile*luminosity)
ax[2][0].set_xlabel('Radius')
ax[2][0].set_title('Heating')

plt.tight_layout()
plt.show()
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1.3.7 Boundary Conditions & Internal Heating

Boundary conditions are controlled through the Boundary_Conditions_Namelist. All Rayleigh simulations
are run with impenetrable boundaries. These boundaries may be either no-slip or stress-free (default). If
you want to employ no-slip conditions at both boundaries, set no_slip_boundaries = .true.. If you wish
to set no-slip conditions at only one boundary, set no_slip_top=.true. or no_slip_bottom=.true. in the
Boundary_Conditions_Namelist.

By default, magnetic boundary conditions are set to match to a potential field at each boundary.

By default, the thermal anomoly Θ is set to a fixed value at each boundary. The upper and lower boundary-
values are specified by setting T_top and T_bottom respectively in the Boundary_Conditions_Namelist.
Their defaults values are 1 and 0 respectively.

Alternatively, you may specify a constant value of 𝜕Θ/𝜕𝑟 at each boundary. This is accomplished by setting
the variables fix_dTdr_top and fix_dTdr_bottom. Values of the gradient may be enforced by setting the
namelist variables dTdr_top and dTdr_bottom. Both default to a value of zero.

Generic Boundary Conditions

Boundary conditions for temperature, 𝑇 , and the magnetic poloidal potential,𝐶, may also be set using generic
spectral input. As with initial conditions (see Generic Initial Conditions) this is done by generating a generic
input file using the rayleigh_spectral_input.py script. The file output from this script can then be applied
using:

• fix_Tvar_top and T_top_file (overrides T_top for a constant boundary condition) to set a fixed upper
𝑇 boundary condition

• fix_dTdr_top and dTdr_top_file (overrides dTdr_top) to set a fixed upper 𝑇 gradient boundary con-
dition

• fix_Tvar_bottom and T_bottom_file (overrides T_bottom) to set a fixed lower 𝑇 boundary condition

• fix_dTdr_bottom and dTdr_bottom_file (overrides dTdr_bottom) to set a fixed lower 𝑇 gradient
boundary condition

• fix_poloidal_top and C_top_file (overrides impose_dipole_field) to set a fixed upper 𝐶 boundary
condition

• fix_poloidal_bottom and C_bottom_file (overrides impose_dipole_field) to set a fixed lower 𝐶
boundary condition

For example, to set a 𝐶 boundary condition on both boundaries with modes (l,m) = (1,0) and (1,1) set to
pre-calculated values run:

rayleigh_spectral_input.py -m 1 0 2.973662220170157 -m 1 1 0.5243368809294343+0.
→˓j -o ctop_init_bc
rayleigh_spectral_input.py -m 1 0 8.496177771914736 -m 1 1 1.4981053740840984+0.
→˓j -o cbottom_init_bc
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which will generate generic spectral input files ctop_init_bc and cbottom_init_bc. Set these to be used as the
boundary conditions in main_input using:

&Boundary_Conditions_Namelist
fix_poloidalfield_top = .true.
fix_poloidalfield_bottom = .true.
C_top_file = 'ctop_init_bc'
C_bottom_file = 'cbottom_init_bc'
/

This can be seen being applied in tests/generic_input.

Internal Heating

The internal heating function 𝑄(𝑟) is activated and described by two variables in the Reference_Namelist.
These are Luminosity and heating_type. Note that these values are part of the Reference_Namelist and
not the Boundary_Conditions namelist. Three heating types (0,1, and 4) are fully supported at this time.
Heating type zero corresponds to no heating. This is the default.

Heating_type=1: This heating type is given by :

𝑄(𝑟) = 𝛾 𝜌(𝑟)𝑇 (𝑟)

where 𝛾 is a normalization constant defined such that

4𝜋

∫︁ 𝑟=𝑟max

𝑟=𝑟min

𝑄(𝑟) 𝑟2𝑑𝑟 = Luminosity.

This heating profile is particularly useful for emulating radiative heating in a stellar convection zone.

Heating_type=4: This heating type corresponds a heating that is variable in radius, but constant in energy
density. Namely

𝜌𝑇
𝜕Θ

𝜕𝑡
= 𝛾.

The constant 𝛾 in this case is also set by enforcing Equation eq_lum.

Note: If internal heating is used in combination with fix_dTdr_top, then the value of 𝜕Θ/𝜕𝑟 at the upper
boundary is set by Rayleigh. Any value for dTdr_top specified in main_input is ignored. This is done to en-
sure consistency with the internal heating and any flux passing through the lower boundary due to the use of a
fixed-flux condition. To override this behavior, set adjust_dTdr_top to .false. in the Boundary_Conditions
namelist.
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1.3.8 Output Controls

Rayleigh comes bundled with an in-situ diagnostics package that allows the user to sample a simulation in
a variety of ways, and at user-specified intervals throughout a run. This package is comprised of roughly
17,000 lines of code (about half of the Rayleigh code base). Here we will focus on generating basic output,
but we refer the user to the section plotting and Output Quantity Codes for more information.

Rayleigh can compute the quantities listed in Output Quantity Codes in a variety of averages, slices, and
spectra, which are collectively called data products. These are sorted by Rayleigh into directories as follows:

• G_Avgs: The quantity is averaged over the entire simulation volume.

• Shell_Avgs: The quantity is averaged over each spherical shell and output as a function of radius.

• AZ_Avgs: The quantity is averaged over longitude and output as a function of radius and latitude.

• Shell_Slices: The quantity at the specified radii is output as a function of latitude and longitude.

• Equatorial_Slices: The quantity at the specified latitudes is output as a function of radius and longitude.

• Meridional_Slices: The quantity at the specified longitudes is output as a function of radius and lati-
tude.

• Spherical_3D: The qunatity over the entire domain. Careful – these files can be quite large.

• Shell_Spectra: The quantity’s spherical harmonic coefficents at the specified radii.

• Point_Probes: The quantity at a specified radius, latitude, and longtiude.

• SPH_Mode_Sampels: The quantity’s spherical harmonic coefficents at the specified radii and ℓ.

In addition Rayleigh can output Checkpoints, which are the data required to restart Rayleigh and will be
discussed in detail in Checkpointing, and Timings, which contain information about the performance of the
run.

Output in Rayleigh is controled through the io_controls_namelist. For each of the data products listed, the
output is specified using the following pattern:

• _values: The quantity codes desired (seperated by commas)

• _frequency: The frequency in iterations those quantities will be output.

• _nrec: Number of records to be combined into a single file.

• _levels: Radial indicies at which the quantities will be output.

• _indices: Latitudinal indicies at which the quantities will be output.

• _ell: The spherical harmonic degree at which the quantities will be output.

• _r, _theta, _phi: The radial, latitudinal, and longitudinal indicies at which the quantities will be output.

For example, if you wanted to output shell slice data for quantities 1, 2, 10, and 2711 at radial indicices 2 and
54 every 100 iterations and have 4 records per file, you would set

shellslice_levels = 2,54
shellslice_values = 1,2,10,2711
shellslice_frequency = 100
shellslice_nrec = 4

Files output in this way will have the filename of their iteration.
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1.3.9 Transport coefficents

Transport coefficients (viscosity, thermal diffusivity) are specified in the transport namelist.

Table. Anelastic Transport.
Variables in the Transport_Namelist that must be specified when running in dimensional anelastic mode. In
addition, reference_type=2 must also be specified in the Reference_Namelist.

Variable [Default
value]

Description

nu_top [1.0] kinematic viscosity at rmax, 𝜈(𝑟𝑚𝑎𝑥)

nu_type [1] determines whether 𝜈 is constant with radius (1) or varies with den-
sity (2)

nu_power [0.0] exponent in : 𝜈(𝑟) =
(︁

𝜌(𝑟)
𝜌(𝑟=𝑟𝑚𝑎𝑥)

)︁𝑛𝑢_𝑝𝑜𝑤𝑒𝑟
; use with nu_type=2

kappa_top [1.0] thermal diffusivity at rmax, 𝜅(𝑟𝑚𝑎𝑥)

kappa_type [1] determines whether 𝜅 is constant with radius (1) or varies with den-
sity (2)

kappa_power [0.0] exponent in : 𝜅(𝑟) =
(︁

𝑟ℎ𝑜(𝑟)
𝜌(𝑟=𝑟𝑚𝑎𝑥)

)︁𝑘𝑎𝑝𝑝𝑎_𝑝𝑜𝑤𝑒𝑟
; use with

kappa_type=2
eta_top [1.0] magnetic diffusivity at rmax, 𝜂(𝑟𝑚𝑎𝑥)

eta_type [1] determines whether 𝜂 is constant with radius (1) or varies with den-
sity (2)

eta_power [0.0] exponent in : 𝜂(𝑟) =
(︁

𝜌(𝑟)
𝜌(𝑟=𝑟𝑚𝑎𝑥)

)︁𝑒𝑡𝑎_𝑝𝑜𝑤𝑒𝑟
; use with eta_type=2

1.3.10 Examples from Recent Publications

A Solar-like Case

This is the main_input file from Case 39 from:

Hindman, Bradley W., Nicholas A. Featherstone, and Keith Julien. 2020. “Morphological Clas-
sification of the Convective Regimes in Rotating Stars.” The Astrophysical Journal 898 (2): 120.
https://doi.org/10.3847/1538-4357/ab9ec2.

&problemsize_namelist
n_r = 64
n_theta = 192
nprow = 32
npcol = 32
rmin = 5.0d10
rmax = 6.5860209d10
/
&numerical_controls_namelist
/

(continues on next page)
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&physical_controls_namelist
rotation = .true.
magnetism = .false.
/
&temporal_controls_namelist
max_time_step = 1000.0d0
max_iterations = 5000000
checkpoint_interval = 50000
quicksave_interval = 10000
num_quicksaves = 4
cflmin = 0.4d0
cflmax = 0.6d0
/
&io_controls_namelist
/
&output_namelist
!shellslice_levels = 16,32,48,64,80,96,112
!shellslice_values = 1 ! Codes␣
→˓needed for standard output routines
shellslice_levels = 8,16,24,32,40,48,56,64,72,80,88,96,104,112,120
shellslice_values = 1,2,3,301,302,303,304,305,306,307,308,309,401,501,502,
→˓2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711
shellslice_frequency = 10000
shellslice_nrec = 1

!shellspectra_values = 1,2,3 ! Codes␣
→˓needed for standard output routines
shellspectra_levels = 16,32,48,64,80,96,112
shellspectra_values = 1,2,3,301,302,303,304,305,306,307,308,309,401,501,502,
→˓503,504,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711
shellspectra_frequency = 10000
shellspectra_nrec = 1

!azavg_values = 1,2,3,201,202 ! Codes␣
→˓needed for standard output routines
azavg_values = 1,2,3,201,202,401,405,409,501,502,1433,1455,1470,1923,1935,
→˓1943,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711,2712,2713,2714,2715
azavg_frequency = 1000
azavg_nrec = 10

!shellavg_values = 1,2,3,501,502,1433,1455,1470,1923,1935 ! Codes␣
→˓needed for standard output routines
shellavg_values = 1,2,3,401,405,409,501,502,1433,1455,1470,1923,1935,2701,
→˓2702,2703,2704,2705,2706,2707,2708,2709,2710,2711,2712,2713,2714,2715
shellavg_frequency = 100
shellavg_nrec = 100

(continues on next page)
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!globalavg_values = 401,402,403,404,405,406,407,408,409,410,411,412 ! Codes␣
→˓needed for standard output routines
globalavg_values = 401,402,403,404,405,406,407,408,409,410,411,412,413,417,421,
→˓2701,2702,2703,2704,2705,2706,2707
globalavg_frequency = 100
globalavg_nrec = 100

!equatorial_values = 1,3 ! Codes␣
→˓needed for standard output routines
equatorial_values = 1,2,3,4,5,6,201,203,301,302,303,304,305,306,307,308,309,
→˓401,501,502,503,504,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711
equatorial_frequency = 10000
equatorial_nrec = 1

full3d_values = 4
full3d_frequency = 9000000
/

&Boundary_Conditions_Namelist
no_slip_boundaries = .false.
strict_L_Conservation = .false.
dtdr_bottom = 0.0d0
T_Top = 0.0d0
T_Bottom = 851225.7d0
fix_tvar_top = .true.
fix_tvar_bottom = .false.
fix_dtdr_bottom = .true.
/
&Initial_Conditions_Namelist
init_type = 7
magnetic_init_type = -1
mag_amp = 1.0d0
temp_amp = 1.0d1
temp_w = 0.01d4
!restart_iter = 0 ! restart from latest checkpoint of any flavor
/
&Test_Namelist
/
&Reference_Namelist
reference_type = 2
heating_type = 1
luminosity = 3.846d33
poly_n = 1.5d0
poly_Nrho = 3.0d0
poly_mass = 1.98891D33

(continues on next page)
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poly_rho_i = 0.18053428d0
pressure_specific_heat = 3.5d8
angular_velocity = 5.74d-6 ! Sidereal period of 12.7 days (twice the sidereal␣
→˓Carrington rate)
/
&Transport_Namelist
nu_top = 4.d12
kappa_top = 4.d12
/
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1.4 Running Rayleigh

After setting up a custom main_input file, now it is time to run the new model. This section focuses on the
basics of running a Rayleigh model.

1.4.1 Load-Balancing

Rayleigh is parallelized using MPI and a 2-D domain decomposition. The 2-D domain decomposition means
that we envision the MPI Ranks as being distributed in rows and columns. The number of MPI ranks within
a row is nprow and the number of MPI ranks within a column is npcol. When Rayleigh is run with N MPI
ranks, the following constraint must be satisfied:

N = npcol × nprow.

If this constraint is not satisfied , the code will print an error message and exit. The values of nprow and
npcol can be specified in main_input or on the command line via the syntax:

mpiexec -np 8 ./rayleigh.opt -nprow 4 -npcol 2

Rayleigh’s performance is sensitive to the values of nprow and npcol, as well as the number of radial grid
points 𝑁𝑟 and latitudinal grid points 𝑁𝜃. If you examine the main_input file, you will see that it is divided
into Fortran namelists. The first namelist is the problemsize_namelist. Within this namelist, you will see a
place to specify nprow and npcol. Edit main_input so that nprow and npcol agree with the N you intend to
use (or use the command-line syntax mentioned above). The dominate effect on parallel scalability is the
number of messages sent per iteration. For optimal message counts, nprow and npcol should be as close to
one another in value as possible.

1. N = nprow × npcol.

2. nprow and npcol should be equal or within a factor of two of one another.

The value of nprow determines how spherical harmonics are distributed across processors. Spherical har-
monics are distributed in high-𝑚/low-𝑚 pairs, where 𝑚 is the azimuthal wavenumber. Each process is
responsible for all ℓ-values associated with those 𝑚’s contained in memory.

The value of npcol determines how radial levels are distributed across processors. Radii are distributed
uniformly across processes in contiguous chunks. Each process is responsible for a range of radii ∆𝑟.

The number of spherical harmonic degrees 𝑁ℓ is defined by

𝑁ℓ =
2

3
𝑁𝜃

For optimal load-balancing, nprow should divide evenly into 𝑁𝑟 and npcol should divide evenly into the
number of high-𝑚/low-𝑚 pairs (i.e., 𝑁ℓ/2). Both nprow and npcol must be at least 2.

In summary,

1. 𝑛𝑝𝑟𝑜𝑤 ≥ 2.

2. 𝑛𝑝𝑐𝑜𝑙 ≥ 2.

3. 𝑛× 𝑛𝑝𝑐𝑜𝑙 = 𝑁𝑟 (for integer 𝑛).

4. 𝑘 × 𝑛𝑝𝑟𝑜𝑤 = 1
3𝑁𝜃 (for integer 𝑘).
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1.4.2 Checkpointing

We refer to saved states in Rayleigh as checkpoints. A single checkpoint consists of 13 files when magnetism
is activated, and 9 files when magnetism is turned off. A checkpoint written at time step X contains all
information needed to advance the system to time step X+1. Checkpoint filenames end with a suffix indicating
the contents of the file (see Table table_checkpoints). Each checkpoint filename possess a prefix as well. Files
belonging to the same checkpoint share the same prefix. A checkpoint file collection, written at time step
10,000 would look like that shown in Table table_checkpoints.

Table. Checkpoints.
Example checkpoint file collection for a time step 10,000. File contents are indicated.

Filename Contents
00010000_W Poloidal Stream function (at time step 10,000)
00010000_Z Toroidal Stream function
00010000_P Pressure
00010000_S Entropy
00010000_C Poloidal Vector Potential
00010000_A Toroidal Vector Potential
00010000_WAB Adams-Bashforth (A-B) terms for radial momentum (W) equation
00010000_ZAB A-B terms for radial vorticity (Z) equation
00010000_PAB A-B terms for horizontal divergence of momentum (dWdr) equation
00010000_SAB A-B terms for Entropy equation
00010000_CAB A-B terms for C-equation
00010000_AAB A-B terms for A-equation
00010000_grid_etc grid and time-stepping info

These files contain all information needed to advance the system state from time step 10,000 to time step
10,001. Checkpoints come in two flavors, denoted by two different prefix conventions: standard check-
points and quicksaves. This section discusses how to generate and restart from both types of checkpoints.

Standard Checkpoints

Standard checkpoints are intended to serve as regularly spaced restart points for a given run. These files
begin with an 8-digit prefix indicating the time step at which the checkpoint was created.

The frequency with which standard checkpoints are generated can be controlled by modifying the check-
point_interval variable in the temporal_controls_namelist. For example, if you want to generate a check-
point once every 50,000 time steps, you would modify your main_input file to read:

&temporal_controls_namelist
checkpoint_interval = 50000 ! Checkpoint every 50,000 time steps
/

The default value of checkpoint_interval is 1,000,000, which is typically much larger than what you will use
in practice.
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Restarting from a checkpoint is accomplished by first assigning a value of -1 to the variables init_type
and/or magnetic_init_type in the initial_conditions_namelist. In addition, the time step from which you
wish to restart from should be specified using the restart_iter variable in the initial_conditions_namelist.
The example below will restart both the magnetic and hydrodynamic variables using the set of checkpoint
files beginning with the prefix 00005000.

&initial_conditions_namelist
init_type = -1 !Restart magnetic and hydro variables from time step␣
→˓5,000
magnetic_init_type = -1
restart_iter = 5000
/

When both values are set to -1, hydrodynamic and magnetic variables are read from the relevant checkpoint
files. Alternatively, magnetic and hydrodynamic variables may be initialized separately. This allows you to
add magnetism to an already equilibrated hydrodynamic case, for instance. The example below will initialize
the system with a random magnetic field, but it will read the hydrodynamic information (W,Z,S,P) from a
checkpoint created at time step 5,000:

&initial_conditions_namelist
init_type = -1 ! Restart hydro from time step 5,000
magnetic_init_type = 7 ! Add a random magnetic field
restart_iter = 5000
/

In addition to specifying the checkpoint time step manually, you can tell Rayleigh to simply restart using the
last checkpoint written by assigning a value of zero to restart_iter:

&initial_conditions_namelist
init_type = -1
magnetic_init_type = 7
restart_iter = 0 ! Restart using the most recent checkpoint
/

In this case, Rayleigh reads the last_checkpoint file (found within the Checkpoints directory) to determine
which checkpoint it reads.

Quicksaves

In practice, Rayleigh checkpoints are used for two purposes: (1) guarding against unexpected crashes and
(2) supplementing a run’s record with a series of restart points. While standard checkpoints may serve both
purposes, the frequency with which checkpoints are written for purpose (1) is often much higher than that
needed for purpose (2). This means that a lot of data culling is performed at the end of a run or, if disk space
is a particularly limiting factor, during the run itself. For this reason, Rayleigh has a quicksave checkpointing
scheme in addition to the standard scheme. Quicksaves can be written with high-cadence, but require low
storage due to the rotating reuse of quicksave files.

The cadence with which quicksaves are written can be specified by setting the quicksave_interval variable
in the temporal_controls_namelist. Alternatively, the elapsed wall time (in minutes) that passes between
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quicksaves may be controlled by specifying the quicksave_minutes variable. If both quicksave_interval and
quicksave_minutes are specified, quicksave_minutes takes precedence.

What distinguishes quicksaves from standard checkpoints is that only a specified number of quicksaves exist
on the disk at any given time. That number is determined by the value of num_quicksaves. Quicksave files
begin with the prefix quicksave_XX, where XX is a 2-digit code, ranging from 1 through num_quicksaves
and indicates the quicksave number. Consider the following example:

&temporal_controls_namelist
checkpoint_interval = 35000 ! Generate a standard checkpoint once every 35,000␣
→˓time steps
quicksave_interval = 10000 ! Generate a quicksave once every 10,000 time steps
num_quicksaves = 2 ! Keep only two quicksaves on disk at a time
/

At time step 10,000, a set of checkpoint files beginning with prefix quicksave_01 will be generated. At time
step 20,000, a set of checkpoint files beginning with prefix quicksave_02 will be generated. Following that,
at time step 30,000, another checkpoint will be generated, but it will overwrite the existing quicksave_01 files.
At time step 40,000, the quicksave_02 files will be overwritten, and so forth. Because the num_quicksaves
was set to 2, filenames with prefix quicksave_03 will never be generated.

Note that checkpoints beginning with an 8-digit prefix (e.g., 00035000) are still written to disk regularly and
are not affected by the quicksave checkpointing. On time steps where a quicksave and a standard checkpoint
would both be written, only the standard checkpoint is written. Thus, at time step 70,000 in the example
above, a standard checkpoint would be written, and the files beginning with quicksave_01 would remain
unaltered.

Restarting from quicksave_XX may be accomplished by specifying the value of restart_iter to be -XX (i.e.,
the negative of the quicksave you wish to restart from). The following example shows how to restart the
hydrodynamic variables from quicksave_02, while also initializing a random magnetic field.

&initial_conditions_namelist
init_type = -1 ! Restart hydro variables from a checkpoint
magnetic_init_type = 7 ! Initialize a random magnetic field
restart_iter = -2 ! Restart from quicksave number 2
/

Note that the file last_checkpoint contains the number of last checkpoint written. This might be a quicksave
or a standard checkpoint. Specifying a value of zero for restart_iter thus works with quicksaves and standard
checkpoints alike.
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Checkpoint Logs

When checkpoints are written, the number of the most recent checkpoint is appended to a file named check-
point_log, found in the Checkpoints directory. The checkpoint log can be used to identify the time step
number of a quicksave file that otherwise has no identifying information. While this information is also
contained in the grid_etc file, those are written in unformatted binary and cumbersome to access from the
terminal command line.

An entry in the log of “00050000 02” means that a checkpoint was written at time step 50,000 to quick-
save_02. An entry lacking a two-digit number indicates that a standard checkpoint was written at that time
step. The most recent entry in the checkpoint log always comes at the end of the file.

1.4.3 Controlling Run Length & Time Stepping

A simulation’s runtime and time-step size can be controlled using the temporal_controls namelist. The
length of time for which a simulation runs before completing is controlled by the namelist variable
max_time_minutes. The maximum number of time steps that a simulation will run for is determined by the
value of the namelist max_iterations. The simulation will complete when it has run for max_time_minutes
minutes or when it has run for max_iterations time steps – whichever occurs first.

An orderly shutdown of Rayleigh can be manually triggered by creating a file with the name set in termi-
nate_file (i.e., running the command touch terminate in the default setting). If the file is found, Rayleigh
will stop after the next time step and write a checkpoint file. The existence of terminate_file is checked
every terminate_check_interval iterations. The check can be switched off completely by setting termi-
nate_check_interval to -1. Both of these options are set in the io_controls_namelist. With the appropriate
job script this feature can be used to easily restart the code with new settings without losing the current allo-
cation in the queuing system. A terminate_file left over from a previous run is automatically deleted when
the code starts.

Time-step size in Rayleigh is controlled by the Courant-Friedrichs-Lewy condition (CFL; as determined
by the fluid velocity and Alfvén speed). A safety factor of cflmax is applied to the maximum time step
determined by the CFL. Time-stepping is adaptive. An additional variable cflmin is used to determine if the
time step should be increased.

The user may also specify the maximum allowed time-step size through the namelist variable
max_time_step. The minimum allowable time-step size is controlled through the variable min_time_step.
If the CFL condition is less than this value, the simulation will exit.

Let ∆𝑡 be the current time-step size, and let 𝑡CFL be the maximum time-step size as determined by the CFL
limit. The following logic is employed by Rayleigh when calculating the time-step size:

• IF { ∆𝑡 ≥ cflmax × 𝑡CFL } THEN { ∆𝑡 is set to cflmax × 𝑡CFL }.

• IF { ∆𝑡 ≤ cflmin × 𝑡CFL } THEN { ∆𝑡 is set to cflmax × 𝑡CFL }.

• IF{ 𝑡CFL ≥ max_time_step } THEN { ∆𝑡 is set to max_time_step }

• IF{ 𝑡CFL ≤ min_time_step } THEN { Rayleigh Exits }

The default values for these variables are:

&temporal_controls_namelist
max_iterations = 1000000

(continues on next page)
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(continued from previous page)

max_time_minutes = 1d8
cflmax = 0.6d0
cflmin = 0.4d0
max_time_step = 1.0d0
min_time_step = 1.0d-13
/

1.4.4 The Log File

Section needs to be written.

1.4.5 I/O Control

Some aspects of Rayleigh’s I/O can be controlled through variables found in the io_controls namelist.

I/O Format Controls

By default, integer output is reported with 8 digits and padded with leading zeros. This includes integer
iteration numbers reported to stdout at each timestep and integer-number filenames created through diag-
nostics and checkpointing output. If desired, the number of digits may be controlled through the inte-
ger_output_digits variable. When reading in a Checkpoint created with a different number of digits, set
the integer_input_digits variable to an appropriate value.

At several points in the code, floating-point output is sent to stdout. This output is formatted using scienific
notation, with three digits to the right of the decimal place. The number of digits after the decimal can be
controlled through the decimal_places variable.

As an example, the following combination of inputs

&temporal_controls_namelist
checkpoint_interval=10
/
&io_controls_namelist
integer_output_digits=5
integer_input_digits=3
decimal_places=5
/
&initial_conditions_namelist
init_type=-1
restart_iter=10
/

would restart from checkpoint files with the prefix formatted as:

Checkpoints/010_grid_etc.

It would generate status line, shell_slice output, and checkpoints formatted as:
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Iteration: 00033 DeltaT: 1.00000E-04 Iter/sec: 2.68500E+00
Shell_Slices/00020
Checkpoints/00020_grid_etc.

Developer’s Note: The format codes generated through the values of these three variables are declared (with
descriptive comments) in Controls.F90. For integer variables that may take on a negative value, additional
format codes with one extra digit (for the negative sign) are also provided.

I/O Redirection

Rayleigh writes all text output (e.g., error messages, iteration counter, etc.) to stdout by default. Different
computing centers handle stdout in different ways, but typically one of two path is taken. On some machines,
a log file is created immediately and updated continuously as the simulation runs. On other machines, stdout
is buffered on-node and written to disk only when the run has terminated.

There are situations where it can be advantageous to have a regularly updated log file whose update fre-
quency may be controlled. This feature exists in Rayleigh and may be accessed by assigning values to std-
out_flush_interval and stdout_file in the io controls namelist.

&io_controls_namelist
stdout_flush_interval = 1000
stdout_file = 'routput'
/

Set stdout_file to the name of a file that will contain Rayleigh’s text output. In the example above, a file
named routput will be appear in the simulation directory and will be updated periodically throughout the run.
The variable stdout_flush_interval determines how many lines of text are buffered before they are flushed
to routput. Rayleigh prints time-step information during each time step, and so setting this variable to a
relatively large number (e.g., 100+) prevents excessive disk access from occurring throughout the run. In the
example above, a text buffer flush will occur once 1000 lines of text have been accumulated.

Changes in the time-step size and self-termination of the run will also force a text-buffer flush. Unexpected
crashes and sudden termination by the system job scheduler do not force a buffer flush. Note that the default
value of stdout_file is ‘nofile’. If this value is specified, output will directed to normal stdout.

To save on disk space for logs of very long runs, the number of status outputs can be reduced by specifying
statusline_interval in the io_controls_namelist. This causes only every n-th status line to be written.

1.4.6 Run Termination

Section needs to be written.
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1.5 Running at Scale

1.5.1 Getting Ready for Large Runs

Need text here.

1.5.2 Modules and Queues

Need text here.

1.5.3 Example Configurations

Need text here.

1.5.4 Sample Jobscripts

Need text here.

1.5.5 Ensemble Mode

Rayleigh can also be used to run multiple simulations under the umbrella of a single executable. This func-
tionality is particularly useful for running parameter space studies, which often consist of mulitple, similarly-
sized simulations, in one shot. Moreover, as some queuing systems favor large jobs over small jobs, an en-
semble mode is useful for advancing multiple small simulations through the queue in a reasonable timeframe.

Running Rayleigh in ensemble mode is relatively straightforward. To begin with, create a directory for each
simulation as you normally would, and place an appropriately modified main_input into each directory. These
directories should all reside within the same parent directory. Within that parent directory, you should place
a copy of the Rayleigh executable (or a softlink). In addition, you should create a text file named run_list that
contains the name of each simulation directory, one name per line. An ensemble job may then be executed
by calling Rayleigh with nruns command line flag as:

user@machinename ~/runs/ $ mpiexec -np Y ./rayleigh.opt -nruns X

Here, Y is the total number of cores needed by all X simulations listed in run_list.

Example: Suppose you wish to run three simulations at once from within a parent directory named ensemble
and that the simulation directories are named run1, run2, and run3. When performing an ls from within
ensemble, you should see 5 items.

user@machinename ~/runs/ $ cd ensemble
user@machinename ~/runs/ensemble $ ls
rayleigh.opt run1 run2 run3 run_list

In this example, the contents of run_list should be the local names of your ensemble run-directories, namely
run1, run2, and run3.
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user@machinename ~runs/ensemble $ more run_list
run1
run2
run3

<-- place an empty line here

Note that some Fortran implementations will not read the last line in run_list unless it ends in a newline
character. Avoid unexpected crashes by hitting “enter” following your final entry in run_list.

Before running Rayleigh, make sure you know how many cores each simulation needs by examining the
main_input files:

user@machinename ~runs/ensemble $ head run1/main_input
&problemsize_namelist
n_r = 128
n_theta = 192
nprow = 16
npcol = 16
/

user@machinename ~runs/ensemble $ head run2/main_input
&problemsize_namelist
n_r = 128
n_theta = 384
nprow = 32
npcol = 16
/

user@machinename ~runs/ensemble $ head run3/main_input
&problemsize_namelist
n_r = 64
n_theta = 192
nprow = 16
npcol = 16
/

In this example, we need a total of 1024 cores (256+512+256) to execute three simulations, and so the relevant
call to Rayleigh would be:

user@machinename ~/runs/ $ mpiexec -np 1024 ./rayleigh.opt -nruns 3

Closing Notes: When running in ensemble mode, it is strongly recommended that you redirect standard
output for each simulation to a text file (see §I/O Control). Otherwise, all simulations write to the same
default (machine-dependent) log file, making it difficult to read. Moreover, some machines such as NASA
Pleiades will terminate a run if the log file becomes too long. This is easy to do when multiple simulations
are writing to the same file.

Finally, The flags -nprow and -npcol are ignored when -nruns is specified. The row and column configuration
for all simulations needs to be specified in their respective main_input files instead.

82 Chapter 1. User Guide



Rayleigh

1.6 Analyzing Output

As discussed in Output Controls,Rayleigh comes bundled with an in-situ diagnostics package that allows the
user to sample a simulation in a variety of ways, and at user-specified intervals throughout a run. We refer
the user to the diagnostics plotting notebook, located at Rayleigh/post_processing/Diagnostic_Plotting.ipynb.
An html version is provided here.

1.6.1 The Lookup Table (LUT)

Rayleigh has on the order of 1,000 possible diagnostic quantities available to the user. As discussed in the
examples above, the user specifies which diagnostic outputs to compute by providing the appropriate quantity
codes in the input file. Internally, Rayleigh uses the quantity codes similarly to array indices. The purpose of
the lookup table is to map the quantity code to the correct position in the output data array, you should never
assume the quantities will be output in any particular order. The user may have only requested two quantity
codes, for example, 1 and 401. The output data array will be of size 2 along the axis corresponding to the
quantities. The lookup table could map 401 to the first entry and 1 to the second entry.

The standard way to interact with the lookup table is to know the quantity code and explicitly use it. Here we
describe an alternative method. Each quantity code entry (Output Quantity Codes) has an equation, a code,
and a name. There are some python scripts in the post_processing directory that allow you to use the name,
instead of the code, when interacting with the lookup table:

• lut.py

• generate_mapping.py

• lut_shortcuts.py

The lut.py file is the main user-interface and contains various utility routines, including functions to con-
vert between codes and names. The generate_mapping.py file is responsible for generating the mapping
between codes and names. The lut_shortcuts.py allows users to define their own mapping, allowing a
conversion from a user-defined name to the desired quantity code. The lut_shortcuts.py file does not ex-
ist in the source code, it must be generated by the user; an example shortcuts file can be found in the
post_processing/lut_shortcuts.py.example file. The fastest way to start using shortcuts is to copy the example
file:

cd /path/to/Rayleigh
cd post_processing/
cp lut_shortcuts.py.example lut_shortcuts.py

and then make edits to the new lut_shortcuts.py file.

The mapping has already been generated and is stored in the lut_mapping.py file. For developers or anyone
wanting to re-generate the mapping, use the generate_mapping.py file:

python generate_mapping.py /path/to/Rayleigh

This will parse the Rayleigh directory tree and generate the standard mapping between quantity codes and
their associated names stored in the new file lut_mapping.py. Only quantity codes that are defined within the
Rayleigh source tree will be included. Rayleigh does not need to be compiled before generating the mapping.

If a user has a custom directory where output diagnostics are defined, the above command will not capture
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the custom diagnostic codes. To include custom quantities, the user must generate the mapping themselvese
with the generate_mapping.py file:

python generate_mapping.py /path/to/Rayleigh/ --custom-dir=/path/to/custom/

Note that the Rayleigh directories are identical between the two calls, the only addition is the custom-dir flag.
This command will generate a new mapping stored in the file lut_mapping_custom.py and will include all of
the standard output quantities as well as the custom diagnostics.

Without using this mapping technique, plotting something like the kinetic energy could appear as:

from rayleigh_diagnostics import G_Avgs, build_file_list

files = build_file_list(0, 10000000, path='G_Avgs')
g = G_Avgs(filename=files[0], path='')

ke_code = g.lut[401] # must use quantity code in lookup table

ke = g.data[:, ke_code] # extract KE as a function of time

With the newly generated mapping, the above code could be rewritten as:

from rayleigh_diagnostics import G_Avgs, build_file_list

from lut import lookup # <-- import helper function from main interface

files = build_file_list(0, 10000000, path='G_Avgs')
g = G_Avgs(filename=files[0], path='')

ke_code = g.lut[lookup('kinetic_energy')] # use quantity *name* in lookup table

ke = g.data[:, ke_code] # extract KE as a function of time, same as before

There is one drawback to using the quantity names: the naming scheme is somewhat random and they can
be quite long strings. This is where the lut_shortcuts.py can be very useful. This allows users to define their
own names to use in the mapping. These are defined in the lut_shortcuts.py file and always take the form:

shortcuts['custom_name'] = 'rayleigh_name'

where custom_name is defined by the user, and rayleigh_name is the quantity name that Rayleigh uses. The
main dictionary must be named ‘shortcuts’. With an entry like:

shortcuts['ke'] = 'kinetic_energy'

the above example for extracting the kinetic energy is even more simple:

from rayleigh_diagnostics import G_Avgs, build_file_list

from lut import lookup # <-- import helper function from main interface

(continues on next page)
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(continued from previous page)

files = build_file_list(0, 10000000, path='G_Avgs')
g = G_Avgs(filename=files[0], path='')

ke_code = g.lut[lookup('ke')] # user defined *name* in lookup table

ke = g.data[:, ke_code] # extract KE as a function of time, same as before

1.6.2 Plotting Examples

Note: Please note this notebook has not been updated since the conversion to online documentation (July
2019). The Rayleigh/doc directory has been reorganized. A pdf version of the document can be created by
the user through the website.

Nick Featherstone (January, 2018)

NOTE: This document can be viewed in PDF or HTML (recommended) form. It can also be run as an
interactive Jupyter notebook.

The HTML and PDF versions are located in Rayleigh/doc/Diagnostic_Plotting.{html,pdf}
The Jupyter notebook is located in Rayleigh/post_processing/Diagnostic_Plotting.ipynb
Standalone Python example scripts for each output type may also found in Rayleigh/post_processing/

Contents

1. Running a Benchmark with Sample Output

2. Configuring your Python environment

3. Overview of Rayleigh’s Diagnostic Package

4. Global Averages

5. Shell Averages

6. Azimuthal Averages

7. Simulation Slices

8. Spherical Harmonic Spectra

9. Point Probes

10. Modal Outputs
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I. Running a Benchmark with Sample Output

Before you can plot data, you will need to generate data. The code samples in this notebook assume that you
have run the model described by the input file found in:

rayleigh/input_examples/benchmark_diagnostics_input

This input file instructs Rayleigh to run the Christensen et al. (2001) hydrodynamic (case 0) benchmark.
Running this model with the prescribed outputs will generate approximately 70 MB of data.

To run this model: 1. Create a directory for your simulation (e.g., mkdir my_test_run) 2. Copy the input
file: cp rayleigh/input_examples/benchmark_diagnostics_input my_test_run/main_input 3. Copy or
soft-link the rayleigh executable: cp Rayleigh/bin/rayleigh.opt my_test_run/. 4. Run the code: mpiexec
-np N ./rayleigh -nprow n -npcol m (choose values of {N,n,m} such that n x m = N)

The code will run for 40,000 timesteps, or four viscous diffusion times. While it runs, Rayleigh will perform
an in-situ analysis of the accuracy benchmark. Reports are written once every 1,000 time steps and are stored
in the Benchmark_Reports subdirectory. Examine file 00030000 and ensure that you see similar results to
those below. Your exact numbers may differ slightly, but all quantities should be under 1% difference.

Observable Measured Suggested % Difference Std. Dev.
Kinetic Energy 58.347827 58.348000 -0.000297 0.000000
Temperature 0.427424 0.428120 -0.162460 0.000101
Vphi -10.119483 -10.157100 -0.370356 0.013835
Drift Frequency 0.183016 0.182400 0.337630 0.007295

If necessary, copy the data to the system on which you intend to conduct your analysis. Before you can plot,
you will need to configure your Python environment.

II. Configuring Your Python Environment

Rayleigh comes packaged with a Python library (rayleigh_diagnostics.py) that provides data structures and
methods associated with each type of diagnostic output in Rayleigh. This library relies on Numpy and is
compatible with Python 3.x or 2.x (The print function is imported from the future module).

If you wish to follow along with the plotting examples described in this document, you will need to have the
Numpy and Matplotlib Python packages installed. The following versions of these packages were used when
creating these examples: * Matplotlib v2.0.2 * Numpy v1.13.1

Unless you are experienced at installing and managing Python packages, I recommend setting up a virtual
environment for Python using Conda. You may also install the required packages manually, but the advan-
tage of this approach is that you maintain an entirely separate version of Python and related packages for
this project. Below are directions for setting up a Python/Conda environment with Intel-optimized Python
packages on a Linux system (Mac and Windows work similarly).
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Conda Installation on Linux Systems

Step 1: Download the appropriate Miniconda installation script from https://conda.io/miniconda.html
(choose Python 3.x)

Step 2: Make the shell script executable via: chmod +x Miniconda3-latest-Linux-x86_64.sh (or similar
script name)

Step 3: Run the installation script: ./Miniconda3-latest-Linux-x86_64.sh
NOTE: The default installation directory is your home directory. This is also where Python packages for your
Conda environments will be installed. Avoid installing to a disk with limited space (user home directories
on HPC systems are often limited to a few GB).

NOTE: Unless you have a specific reason not to do so, answer “yes” to the question concerning prepending
to PATH.

Step 5: Update your Conda: conda update conda
Step 6: Add the Intel Conda channel: conda config –add channels intel
Step 7: Create a virtual environment for Intel’s Conda distribution: conda create -n idp intelpython3_full
python=3
NOTE: In this case, idp will be your virtual environment name. You are free to pick an alternative when
running conda create.

NOTE: A number of Python packages will be downloaded, including Numpy and Matplotlib. The process
may appear to hang at the last step. Be patient.

Step 8: Activate your virtual environment: source activate idp
Step 9: Verify your installation. Type python and then type the following commands at the prompt: 1.
import numpy 2. import matplotlib

If those commands worked without error, you may close Python ( type exit() ). You can revert to your native
environment by typing source deactivate (or just close the terminal). Whenever you wish to access your
newly-installed Python, type source activate idp first, before running python.

Preparing to Plot

All examples in this document rely on the rayleigh_diagnostics module. This module is located in Rayleigh/-
post_processing, along with several standalone scripts copies from the individual sections of this document.
For example, the script plot_G_Avgs.py contains the code from section IV below. All python files you wish
to use will need to reside in either your run directory (recommended) or a directory within your PYTHON-
PATH.

We suggest copying all python files to your my_test_run directory: 1. cp Rayleigh/post_processing/.py
my_test_run/. 2. cp Rayleigh/post_processing/.ipynb my_test_run/.
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The Jupyter Notebook

This document resides in three places: 1. Rayleigh/doc/Diagnostic_Plotting.pdf 2. Rayleigh/doc/Diagnos-
tic_Plotting.html 3. Rayleigh/post_processing/Diagnostic_Plotting.ipynb

The third file is a Jupyter notebook file. This source code was used to generate the html and pdf documents.
The notebook is designed to be run from within a Rayleigh simulation directory. If you wish to follow along
interactively, copy the Jupyter notebook file from Rayleigh/post_processing/ into your Rayleigh simulation
directory (step 2 from Preparing to Plot). You can run the file in Jupyter via: 1. source activate idp 2. jupyter
notebook (from within your my_test_run directory) 3. select Diagnostic_Plotting.ipynb in the file menu that
presents itself.

When finished: 1. To close the notebook, type ctrl+c and enter “yes” when prompted to shut down the
notebook server. 2. type source deactivate

III. Overview of Diagnostics in Rayleigh

Rayleigh’s diagnostics package facilitates the in-situ analysis of a simulation using a variety of sampling
methods. Each sampling method may be applied to a unique set of sampled quantities. Sampling methods
are hereafter referred to as output types and sampled quantities as output variables.

Files of each output type are stored in a similarly-named subdirectory within the Rayleigh simulation direc-
tory. Output files are numbered by the time step of the final data record stored in the file. Output behavior
for each simulation is controlled through the main_input file. For each output type, the user specifies the
output variables, cadence, records-per-file, and other properties by modifying the appropriate variables in
the output_namelist section of main_input.

Basic Output Control

Each output type in Rayleigh has at least three namelist variables that govern its behavior:

**{OutputType}_values**: comma-separated list of menu codes corresponding to the desired output vari-
ables

**{OutputType}_frequency**: integer value that determines how often this type of output is performed

**{OutputType}_nrec**: integer value that determines how many records are stored in each output file.

All possible output variables and their associated menu codes are described in rayleigh/-
doc/rayleigh_output_variables.pdf You may find it useful to have that document open while following
along with examples in this notebook.

As an example of how these variables work, suppose that we want to occasionally output equatorial cuts
(output type) of temperature, kinetic energy density, and radial velocity (output variables). At the same time,
we might wish to dump full-volume averages (output type) of kinetic and magnetic energy (output variables)
with a higher cadence. In that case, something similar to the following would appear in main_input:

globalavg_values = 401, 1101
globalavg_frequency = 50
globalavg_nrec = 100
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equatorial_values = 1, 401, 501
equatorial_frequency = 2500
equatorial_nrec = 2

This tells Rayleigh to output full-volume-averages of kinetic energy density (value code 401) and magnetic
energy density (value code 1101) once every 50 time steps, with 100 records per file. Files are named based
on the time step number of their final record. As a result, information from time steps 50, 100, 150, . . . ,
4950, 5000 will be stored in the file named G_Avgs/00005000. Time steps 5050 through 10,000 will stored
in G_Avgs/00010000, and so on.

For the equatorial cuts, Rayleigh will output radial velocity (code 1), the kinetic energy density (code 401)
and temperature (code 501) in the equatorial plane once every 2,500 time steps, storing two time steps per
file. Data from time steps 2,500 and 5,000 will be stored in Equatorial_Slices/00005000. Data from time
steps 7,500 and 10,000 will be stored in Equatorial_Slices/00010000 , and so on.

This general organizational scheme for output was adapted from that developed by Thomas Clune for the
ASH code.

Positional Output Control

Many of Rayleigh’s output types allow the user to specify a set of gridpoints at which to sample the simulation.
A user can, for example, output spherical surfaces sampled at arbitrary radii, or a meridional plane sampled
at a specific longitude. This behavior is controlled through additional namelist variables; we refer to these
variables as positional specifiers. In the sections that follow, positional specifiers associated with a given
output type, if any, will be defined.

Positional specifiers are either indicial or normalized. In the main_input file, indicial specifiers can be as-
signed a comma-separated list of grid indices on which to perform the output. For example,

shellslice_levels = 1, 32, 64, 128

instructs Rayleigh to output shell slices at { radius[1], radius[32], radius[64], radius[128]}. Note that ra-
dius[1] is the outer boundary.

While useful in some situations, specifying indices can lead to confusion if a simulations resolution needs
to be changed at some point during a model’s evolution. For example if the radial grid initially had 128
points, index 128 would correspond to the lower boundary. If the resolution were to double, index 128 would
correspond to mid-shell.

For this reason, all positional specifiers may also be written in normalized form. Instead of integers, the
normalized specifier is assigned a comma separated list of real values in the range [0,1]. The value of zero
corresponds to the lowest-value grid coordinate (e.g., the inner radial boundary or theta=0 pole). The value
1 corresponds to the maximal coordinate (e.g., the outer radial boundary or theta=pi pole). A value of
0.5 corresponds to mid-domain. Normalized coordinates are indicated by adding *_nrm* to the indicial
specifier’s name. For example,

shellslice_levels_nrm= 0, 0.5, 0.95

instructs Rayleigh to output shell slices at the lower boundary, mid-shell, and slightly below the upper bound-
ary. Rayleigh does not interpolate, but instead picks the grid coordinate closest to each specified normalized
coordinate.
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We recommend using normalized coordinates to avoid inconsistencies between restarts. They also overcome
difficulties associated with the non-uniform nature of the radial and theta grids wherein grid points cluster
near the boundaries.

Positional Ranges Ranges of coordinates can be specified using shorthand, if desired. The inclusive coor-
dinate range [X,Y] is indicated by a positive/negative number pair appearing in the indicial or normalized
coordinate list. Multiple ranges can be specified within a list. For example,

shellslice_levels = 1,10,-15, 16, 20,-25, 128

would instruct Rayleigh to output shell slices at radial indices = { 1, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22,
23, 24, 25, 128}

Similarly,

shellslice_levels_nrm = 0,-0.5, 1.0

instructs Rayleigh to output shells at all radii in the lower half of the domain, and at the outer boundary.

IV. Global Averages

Summary: Full-volume averages of requested output variables over the full, spherical shell

Subdirectory: G_Avgs

main_input prefix: globalavg

Python Class: G_Avgs

Additional Namelist Variables:
None

Before proceeding, ensure that you have copied Rayleigh/post_processing/rayleigh_diagnostics.py to your
simulation directory. This Python module is required for reading Rayleigh output into Python.

Examining the main_input file, we see that the following output values have been denoted for the Global
Averages (see rayleigh_output_variables.pdf for the mathematical formulae):

Menu Code Description
401 Full Kinetic Energy Density (KE)
402 KE (radial motion)
403 KE (theta motion)
404 KE (phi motion)
405 Mean Kinetic Energy Density (MKE)
406 MKE (radial motion)
407 MKE (theta motion)
408 MKE (phi motion)
409 Fluctuating Kinetic Energy Density (FKE)
410 FKE (radial motion)
411 FKE (theta motion)
412 FKE (phi motion)
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In the example that follows, we will plot the time-evolution of these different contributions to the kinetic
energy budget. We begin with the following preamble:

[ ]: %matplotlib inline
from rayleigh_diagnostics import G_Avgs, build_file_list
import matplotlib.pyplot as plt
import numpy

The preamble for each plotting example will look similar to that above. We import the numpy and mat-
plotlib.pyplot modules, aliasing the latter to plt. We also import two items from rayleigh_diagnostics: a
helper function build_file_list and the GlobalAverage class.

The G_Avgs class is the Python class that corresponds to the full-volume averages stored in the G_Avgs
subdirectory of each Rayleigh run.

We will use the build_file_list function in many of the examples that follow. It’s useful when processing a
time series of data, as opposed to a single snapshot. This function accepts three parameters: a beginning
time step, an ending time step, and a subdirectory (path). It returns a list of all files found in that directory
that lie within the inclusive range [beginning time step, ending time step]. The file names are prepended with
the subdirectory name, as shown below.

[ ]: # Build a list of all files ranging from iteration 0 million to 1 million
files = build_file_list(0,1000000,path='G_Avgs')
print(files)

We can create an instance of the G_Avgs class by initializing it with a filename. The optional keyword
parameter path is used to specify the directory. If path is not specified, its value will default to the subdirectory
name associated with the datastructure (G_Avgs in this instance).

Each class was programmed with a docstring describing the class attributes. Once you created an instance
of a rayleigh_diagnostics class, you can view its attributes using the help function as shown below.

[ ]: a = G_Avgs(filename=files[0],path='') # Here, files[0]='G_Avgs/00010000'
#a= G_Avgs(filename='00010000') would yield an equivalent result
help(a)

Examining the docstring, we see a few important attributes that are common to the other outputs discussed
in this document: 1. niter – the number of time steps in the file 2. nq – the number of output variables stored
in the file 3. qv – the menu codes for those variables 4. vals – the actual data 5. time – the simulation time
corresponding to each output dump

The first step in plotting a time series is to collate the data.

[ ]: # Loop over all files and concatenate their data into a single array
nfiles = len(files)
for i,f in enumerate(files):

a = G_Avgs(filename=f,path='')
if (i == 0):

nq = a.nq
niter = a.niter

(continues on next page)
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gavgs = numpy.zeros((niter*nfiles,nq),dtype='float64')
iters = numpy.zeros(niter*nfiles,dtype='int32')
time = numpy.zeros(niter*nfiles,dtype='float64')

i0 = i*niter
i1 = (i+1)*niter
gavgs[i0:i1,:] = a.vals
time[i0:i1] = a.time
iters[i0:i1] = a.iters

The Lookup Table (LUT)

The next step in the process is to identify where within the gavgs array our deisired output variables reside.
Every Rayleigh file object possesses a lookup table (lut). The lookup table is a python list used to identify
the index within the vals array where a particular menu code resides. For instance, the menu code for the
theta component of the velocity is 2. The location of v_theta in the vals array is then stored in lut[2].

Note that you should never assume that output variables are stored in any particular order. Moreover, the
lookup table is unique to each file and is likely to change during a run if you modify the output variables in
between restarts. When running the benchmark, we kept a consistent set of outputs throughout the entirety
of the run. This means that the lookup table did not change between outputs and that we can safely use the
final file’s lookup table (or any other file’s table) to reference our data.

Plotting Kinetic Energy

Let’s examine the different contributions to the kinetic energy density in our models. Before we can plot, we
should use the lookup table to identify the location of each quantity we are interested in plotting.

[ ]: #The indices associated with our various outputs are stored in a lookup table
#as part of the GlobalAverage data structure. We define several variables to
#hold those indices here:

lut = a.lut
ke = lut[401] # Kinetic Energy (KE)
rke = lut[402] # KE associated with radial motion
tke = lut[403] # KE associated with theta motion
pke = lut[404] # KE associated with azimuthal motion

#We also grab some energies associated with the mean (m=0) motions
mke = lut[405]
mrke = lut[406] # KE associated with mean radial motion
mtke = lut[407] # KE associated with mean theta motion
mpke = lut[408] # KE associated with mean azimuthal motion

(continues on next page)
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#We also output energies associated with the fluctuating/nonaxisymmetric
#motions (e.g., v- v_{m=0})
fke = lut[409]
frke = lut[410] # KE associated with mean radial motion
ftke = lut[411] #KE associated with mean theta motion
fpke = lut[412] # KE associated with mean azimuthal motion

To begin with, let’s plot the total, mean, and fluctuating kinetic energy density during the initial transient
phase, and then during the equilibrated phase.

[ ]: sizetuple=(10,3)
fig, ax = plt.subplots(ncols=2, figsize=sizetuple)
ax[0].plot(time, gavgs[:,ke], label='KE')
ax[0].plot(time, gavgs[:,mke],label='MKE')
ax[0].plot(time, gavgs[:,fke], label='FKE')
ax[0].legend(loc='center right', shadow=True)
ax[0].set_xlim([0,0.2])
ax[0].set_title('Equilibration Phase')
ax[0].set_xlabel('Time')
ax[0].set_ylabel('Energy')

ax[1].plot(time, gavgs[:,ke], label='KE')
ax[1].plot(time, gavgs[:,mke], label = 'MKE')
ax[1].plot(time,gavgs[:,fke],label='FKE')
ax[1].legend(loc='center right', shadow=True)
ax[1].set_title('Entire Time-Trace')
ax[1].set_xlabel('Time')
ax[1].set_ylabel('Energy')

saveplot = False # Plots appear in the notebook and are not written to disk (set␣
→˓to True to save to disk)
savefile = 'energy_trace.pdf' #Change .pdf to .png if pdf conversion gives␣
→˓issues
plt.tight_layout()
plt.show()

We can also look at the energy associated with each velocity component. Note that we log scale in the last
plot. There is very little mean radial or theta kinetic energy; it is mostly phi energy.

[ ]: sizetuple=(5,10)
xlims=[0,0.2]
fig, ax = plt.subplots(ncols=1, nrows=3, figsize=sizetuple)
ax[0].plot(time, gavgs[:,ke], label='KE')
ax[0].plot(time, gavgs[:,rke],label='RKE')
ax[0].plot(time, gavgs[:,tke], label='TKE')

(continues on next page)
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ax[0].plot(time, gavgs[:,pke], label='PKE')
ax[0].legend(loc='center right', shadow=True)
ax[0].set_xlim(xlims)
ax[0].set_title('Total KE Breakdown')
ax[0].set_xlabel('Time')
ax[0].set_ylabel('Energy')

ax[1].plot(time, gavgs[:,fke], label='FKE')
ax[1].plot(time, gavgs[:,frke], label='FRKE')
ax[1].plot(time, gavgs[:,ftke], label='FTKE')
ax[1].plot(time, gavgs[:,fpke], label='FPKE')
ax[1].legend(loc='center right', shadow=True)
ax[1].set_xlim(xlims)
ax[1].set_title('Fluctuating KE Breakdown')
ax[1].set_xlabel('Time')
ax[1].set_ylabel('Energy')

ax[2].plot(time, gavgs[:,mke], label='MKE')
ax[2].plot(time, gavgs[:,mrke], label='MRKE')
ax[2].plot(time, gavgs[:,mtke], label='MTKE')
ax[2].plot(time, gavgs[:,mpke], label='MPKE')
ax[2].legend(loc='lower right', shadow=True)
ax[2].set_xlim(xlims)
ax[2].set_title('Mean KE Breakdown')
ax[2].set_xlabel('Time')
ax[2].set_ylabel('Energy')
ax[2].set_yscale('log')

plt.tight_layout()
plt.show()

V. Shell Averages

Summary: Spherical averages of requested output variables. Each output variable is stored as a 1-D function
of radius.

Subdirectory: Shell_Avgs

main_input prefix: shellavg

Python Class: Shell_Avgs

Additional Namelist Variables:
None

The Shell-Averaged outputs are useful for examining how quantities vary as a function of radius. They are
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particularly useful for examining the distribution of energy as a function of radius, or the heat flux balance
established by the system.

Examining the main_input file, we see that the following output values have been denoted for the Shell
Averages (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description
1 Radial Velocity
2 Theta Velocity
3 Phi Velocity
501 Temperature Perturbation
1438 Radial Convective Heat Flux
1468 Radial Conductive Heat Flux

In the example that follows, we will plot the spherically-averaged velocity field as a function of radius, the
mean temperature profile, and the radial heat flux. We begin with a preamble similar to that used for the
Global Averages. Using the help function, we see that the Shell_Avgs data structure is similar to that of
the G_Avgs. There are three important differences: * There is a radius attribute (necessary if we want to
plot anything vs. radius) * The dimensionality of the values array has changed; radial index forms the first
dimension. * The second dimension of the values array has a length of 4. In addition to the spherical mean,
the 1st, 2nd and 3rd moments are stored in indices 0,1,2, and 3 respectively.

[ ]: from rayleigh_diagnostics import Shell_Avgs, build_file_list
import matplotlib.pyplot as plt
import numpy

# Build a list of all files ranging from iteration 0 million to 1 million
files = build_file_list(0,1000000,path='Shell_Avgs')
a = Shell_Avgs(filename=files[0], path='')
help(a)

While it can be useful to look at instaneous snapshots of Shell Averages, it’s often useful to examine these
outputs in a time-averaged sense. Let’s average of all 200 snapshots in the last file that was output. We could
average over data from multiple files, but since the benchmark run achieves a nearly steady state, a single file
will do in this case.

[ ]: nfiles = len(files)

nr = a.nr
nq = a.nq
nmom = 4
niter = a.niter
radius = a.radius
savg=numpy.zeros((nr,nmom,nq),dtype='float64')
for i in range(niter):

savg[:,:,:] += a.vals[:,:,:,i]
savg = savg*(1.0/niter)

(continues on next page)

1.6. Analyzing Output 95



Rayleigh

(continued from previous page)

lut = a.lut
vr = lut[1] # Radial Velocity
vtheta = lut[2] # Theta Velocity
vphi = lut[3] # Phi Velocity
thermal = lut[501] # Temperature

eflux = lut[1440] # Convective Heat Flux (radial)
cflux = lut[1470] # Conductive Heat Flux (radial)

Velocity vs. Radius

Next, we plot the mean velocity field, and its first moment, as a function of radius. Notice that the radial and
theta velocity components have a zero spherical mean. Since we are running an incompressible model, this
is a good sign!

[ ]: sizetuple = (7,7)
fig, ax = plt.subplots(nrows=2, ncols =1, figsize=sizetuple)

ax[0].plot(radius,savg[:,0,vr],label=r'$v_r$')
ax[0].plot(radius,savg[:,0,vtheta], label=r'$v_\theta$')
ax[0].plot(radius,savg[:,0,vphi], label=r'$v_\phi$')
ax[0].legend(shadow=True,loc='lower right')
ax[0].set_xlabel('Radius')
ax[0].set_ylabel('Velocity')
ax[0].set_title('Spherically-Averaged Velocity Components')

ax[1].plot(radius,savg[:,1,vr],label=r'$v_r$')
ax[1].plot(radius,savg[:,1,vtheta], label=r'$v_\theta$')
ax[1].plot(radius,savg[:,1,vphi], label=r'$v_\phi$')
ax[1].legend(shadow=True,loc='upper left')
ax[1].set_xlabel('Radius')
ax[1].set_ylabel('Velocity')
ax[1].set_title('Velocity Components: First Spherical Moment')

plt.tight_layout()
plt.show()
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Radial Temperature Profile

We might also look at temperature . . .

[ ]: fig, ax = plt.subplots()

ax.plot(radius,savg[:,0,thermal],label='Temperature (mean)')
ax.plot(radius,savg[:,1,thermal]*10, label='Temperature (standard dev.)')
ax.legend(shadow=True,loc='upper right')
ax.set_xlabel('Radius')
ax.set_ylabel('Temperature')
ax.set_title('Radial Temperature Profile')

plt.show()

Heat Flux Contributions

We can also examine the balance between convective and conductive heat flux. In this case, before plotting
these quantities as a function of radius, we normalize them by the surface area of the sphere to form a
luminosity.

[ ]: fpr=4.0*numpy.pi*radius*radius
elum = savg[:,0,eflux]*fpr
clum = savg[:,0,cflux]*fpr
tlum = elum+clum
fig, ax = plt.subplots()
ax.plot(radius,elum,label='Convection')
ax.plot(radius,clum, label='Conduction')
ax.plot(radius,tlum, label='Total')
ax.set_title('Flux Balance')
ax.set_ylabel(r'Energy Flux ($\times 4\pi r^2$)')
ax.set_xlabel('Radius')
ax.legend(shadow=True)
plt.tight_layout()
plt.show()

VI. Azimuthal Averages

Summary: Azimuthal averages of requested output variables. Each output variable is stored as a 2-D func-
tion of radius and latitude.

Subdirectory: AZ_Avgs

main_input prefix: azavg

Python Class: AZ_Avgs
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Additional Namelist Variables:
None

Azimuthally-Averaged outputs are particularly useful for examining a system’s mean flows (i.e., differential
rotation and meridional circulation).

Examining the main_input file, we see that the following output values have been denoted for the Azimuthal
Averages (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description
1 Radial Velocity
2 Theta Velocity
3 Phi Velocity
201 Radial Mass Flux
202 Theta Mass Flux
501 Temperature Perturbation

In the example that follows, we demonstrate how to plot azimuthal averages, including how to generate
streamlines of mass flux. Note that since the benchmark is Boussinesq, our velocity and mass flux fields are
identical. This is not the case when running an anelastic simulation.

We begin with the usual preamble and also import two helper routines used for displaying azimuthal averages.

Examining the data structure, we see that the vals array is dimensioned to account for latitudinal variation,
and that we have new attributes costheta and sintheta used for referencing locations in the theta direction.

[ ]: from rayleigh_diagnostics import AZ_Avgs, build_file_list, plot_azav,␣
→˓streamfunction
import matplotlib.pyplot as plt
import pylab
import numpy
#from azavg_util import *
files = build_file_list(30000,40000,path='AZ_Avgs')
az = AZ_Avgs(files[0],path='')
help(az)

Before creating our plots, let’s time-average over the last two files that were output (thus sampling the equi-
librated phase).

[ ]:

nfiles = len(files)
tcount=0
for i in range(nfiles):

az=AZ_Avgs(files[i],path='')

(continues on next page)

98 Chapter 1. User Guide



Rayleigh

(continued from previous page)

if (i == 0):
nr = az.nr
ntheta = az.ntheta
nq = az.nq
azavg=numpy.zeros((ntheta,nr,nq),dtype='float64')

for j in range(az.niter):
azavg[:,:,:] += az.vals[:,:,:,j]
tcount+=1

azavg = azavg*(1.0/tcount) # Time steps were uniform for this run, so a simple␣
→˓average will suffice

lut = az.lut
vr = azavg[:,:,lut[1]]
vtheta = azavg[:,:,lut[2]]
vphi = azavg[:,:,lut[3]]
rhovr = azavg[:,:,lut[201]]
rhovtheta = azavg[:,:,lut[202]]
temperature = azavg[:,:,lut[501]]
radius = az.radius
costheta = az.costheta
sintheta = az.sintheta

Before we render, we need to do some quick post-processing: 1. Remove the spherical mean temperature
from the azimuthal average. 2. Convert v_phi into omega 3. Compute the magnitude of the mass flux vector
4. Compute stream function associated with the mass flux field

[ ]: #Subtrace the ell=0 component from temperature at each radius
for i in range(nr):

temperature[:,i]=temperature[:,i] - numpy.mean(temperature[:,i])

#Convert v_phi to an Angular velocity
omega=numpy.zeros((ntheta,nr))
for i in range(nr):

omega[:,i]=vphi[:,i]/(radius[i]*sintheta[:])

#Generate a streamfunction from rhov_r and rhov_theta
psi = streamfunction(rhovr,rhovtheta,radius,costheta,order=0)
#contours of mass flux are overplotted on the streamfunction PSI
rhovm = numpy.sqrt(rhovr**2+rhovtheta**2)*numpy.sign(psi)

Finally, we render the azimuthal averages.
NOTE: If you want to save any of these figures, you can mimic the saveplot logic at the bottom of this
example.
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[ ]: # We do a single row of 3 images
# Spacing is default spacing set up by subplot
figdpi=300
sizetuple=(5.5*3,3*3)

tsize = 20 # title font size
cbfsize = 10 # colorbar font size
fig, ax = plt.subplots(ncols=3,figsize=sizetuple,dpi=figdpi)
plt.rcParams.update({'font.size': 14})

#temperature
#ax1 = f1.add_subplot(1,3,1)
units = '(nondimensional)'
plot_azav(fig,ax[0],temperature,radius,costheta,sintheta,mycmap='RdYlBu_r',
→˓boundsfactor = 2,

boundstype='rms', units=units, fontsize = cbfsize)
ax[0].set_title('Temperature',fontsize=tsize)

#Differential Rotation
#ax1 = f1.add_subplot(1,3,2)
units = '(nondimensional)'
plot_azav(fig,ax[1],omega,radius,costheta,sintheta,mycmap='RdYlBu_r',
→˓boundsfactor = 1.5,

boundstype='rms', units=units, fontsize = cbfsize)
ax[1].set_title(r'$\omega$',fontsize=tsize)

#Mass Flux
#ax1 = f1.add_subplot(1,3,3)
units = '(nondimensional)'
plot_azav(fig,ax[2],psi,radius,costheta,sintheta,mycmap='RdYlBu_r',boundsfactor␣
→˓= 1.5,

boundstype='rms', units=units, fontsize = cbfsize, underlay = rhovm)
ax[2].set_title('Mass Flux',fontsize = tsize)

saveplot=False
if (saveplot):

p.savefig(savefile)
else:

plt.show()
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VII. Simulation Slices

VII.1 Equatorial Slices

Summary: 2-D profiles of selected output variables in the equatorial plane.

Subdirectory: Equatorial_Slices

main_input prefix: equatorial

Python Class: Equatorial_Slices

Additional Namelist Variables:
None

The equatorial-slice output type allows us to examine how the fluid properties vary in longitude and radius.

Examining the main_input file, we see that the following output values have been denoted for the Equatorial
Slices (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description
1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

In the example that follows, we demonstrate how to create a 2-D plot of radial velocity in the equatorial plane
(at a single time step).

We begin with the usual preamble. Examining the data structure, we see that the vals array is dimensioned
to account for longitudinal variation, and that we have the new coordinate attribute phi.

[ ]: from rayleigh_diagnostics import Equatorial_Slices
import numpy
import matplotlib.pyplot as plt
from matplotlib import ticker, font_manager
istring = '00040000'
es = Equatorial_Slices(istring)
tindex =1 # Grab second time index from this file
help(es)

[ ]: ################################
# Equatorial Slice
#Set up the grid

remove_mean = True # Remove the m=0 mean
nr = es.nr
nphi = es.nphi
r = es.radius/numpy.max(es.radius)

(continues on next page)
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phi = numpy.zeros(nphi+1,dtype='float64')
phi[0:nphi] = es.phi
phi[nphi] = numpy.pi*2 # For display purposes, it is best to have a redunant␣
→˓data point at 0,2pi

#We need to generate a cartesian grid of x-y coordinates (both X & Y are 2-D)
radius_matrix, phi_matrix = numpy.meshgrid(r,phi)
X = radius_matrix * numpy.cos(phi_matrix)
Y = radius_matrix * numpy.sin(phi_matrix)

qindex = es.lut[1] # radial velocity
field = numpy.zeros((nphi+1,nr),dtype='float64')
field[0:nphi,:] =es.vals[:,:,qindex,tindex]
field[nphi,:] = field[0,:] #replicate phi=0 values at phi=2pi

#remove the mean if desired (usually a good idea, but not always)
if (remove_mean):

for i in range(nr):
the_mean = numpy.mean(field[:,i])
field[:,i] = field[:,i]-the_mean

#Plot
sizetuple=(8,5)
fig, ax = plt.subplots(figsize=(8,8))
tsize = 20 # title font size
cbfsize = 10 # colorbar font size
img = ax.pcolormesh(X,Y,field,cmap='jet')
ax.axis('equal') # Ensure that x & y axis ranges have a 1:1 aspect ratio
ax.axis('off') # Do not plot x & y axes

# Plot bounding circles
ax.plot(r[nr-1]*numpy.cos(phi), r[nr-1]*numpy.sin(phi), color='black') # Inner␣
→˓circle
ax.plot(r[0]*numpy.cos(phi), r[0]*numpy.sin(phi), color='black') # Outer circle

ax.set_title(r'$v_r$', fontsize=20)

#colorbar ...
cbar = plt.colorbar(img,orientation='horizontal', shrink=0.5, aspect = 15, ax=ax)
cbar.set_label('nondimensional')

tick_locator = ticker.MaxNLocator(nbins=5)
cbar.locator = tick_locator
cbar.update_ticks()
cbar.ax.tick_params(labelsize=cbfsize) #font size for the ticks

(continues on next page)

102 Chapter 1. User Guide



Rayleigh

(continued from previous page)

t = cbar.ax.xaxis.label
t.set_fontsize(cbfsize) # font size for the axis title

plt.tight_layout()
plt.show()

VII.2 Meridional Slices

Summary: 2-D profiles of selected output variables sampled in meridional planes.

Subdirectory: Meridional_Slices

main_input prefix: meridional

Python Class: Meridional_Slices

Additional Namelist Variables:
• meridional_indices (indicial) : indices along longitudinal grid at which to output meridional planes.

• meridional_indices_nrm (normalized) : normalized longitudinal grid coordinates at which to output

The meridional-slice output type allows us to examine how the fluid properties vary in latitude and radius.

Examining the main_input file, we see that the following output values have been denoted for the Meridional
Slices (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description
1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

In the example that follows, we demonstrate how to create a 2-D plot of radial velocity in a meridional plane.
The procedure is similar to that used to plot an azimuthal average.

We begin with the usual preamble and import the plot_azav helper function. Examining the data structure,
we see that it is similar to the AZ_Avgs data structure. The vals array possesses an extra dimension relative
to its AZ_Avgs counterpart to account for the multiple longitudes that may be output, we see attributes phi
and phi_indices have been added to reference the longitudinal grid.

[ ]: #####################################
# Meridional Slice
from rayleigh_diagnostics import Meridional_Slices, plot_azav
import numpy
import matplotlib.pyplot as plt
from matplotlib import ticker, font_manager
# Read the data

istring = '00040000'
(continues on next page)
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ms = Meridional_Slices(istring)
tindex =1 # All example quantities were output with same cadence. Grab second␣
→˓time-index from all.
help(ms)

[ ]:
radius = ms.radius
costheta = ms.costheta
sintheta = ms.sintheta
phi_index = 0 # We only output one Meridional Slice
vr_ms = ms.vals[phi_index,:,:,ms.lut[1],tindex]
units = 'nondimensional'

# Plot
sizetuple=(8,5)
fig, ax = plt.subplots(figsize=(8,8))
tsize = 20 # title font size
cbfsize = 10 # colorbar font size
ax.axis('equal') # Ensure that x & y axis ranges have a 1:1 aspect ratio
ax.axis('off') # Do not plot x & y axes
plot_azav(fig,ax,vr_ms,radius,costheta,sintheta,mycmap='RdYlBu_r',boundsfactor =␣
→˓4.5,

boundstype='rms', units=units, fontsize = cbfsize)
ax.set_title('Radial Velocity',fontsize=tsize)
plt.tight_layout()
plt.show()

VII.3 Shell Slices

Summary: 2-D, spherical profiles of selected output variables sampled in at discrete radii.

Subdirectory: Shell_Slices

main_input prefix: shellslice

Python Class: Shell_Slices

Additional Namelist Variables:
• shellslice_levels (indicial) : indices along radial grid at which to output spherical surfaces.

• shellslice_levels_nrm (normalized) : normalized radial grid coordinates at which to output spherical
surfaces.

The shell-slice output type allows us to examine how the fluid properties vary on spherical surfaces.

Examining the main_input file, we see that the following output values have been denoted for the Shell Slices
(see rayleigh_output_variables.pdf for mathematical formulae):
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Menu Code Description
1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

In the example that follows, we demonstrate how to create a 2-D plot of the radial velocity on a Cartesian,
lat-lon grid.

Plotting on a lat-lon grid is straightforward and illustrated below. The shell-slice data structure is also dis-
played via the help() function in the example below and contains information needed to define the spherical
grid for plotting purposes.

[ ]: #####################################
# Shell Slice
from rayleigh_diagnostics import Shell_Slices
import numpy
import matplotlib.pyplot as plt
from matplotlib import ticker, font_manager
# Read the data

istring = '00040000'
ss = Shell_Slices(istring)
help(ss)
ntheta = ss.ntheta
nphi = ss.nphi
costheta = ss.costheta
theta = numpy.arccos(costheta)

#help(ss)
tindex =1 # All example quantities were output with same cadence. Grab second␣
→˓time-index from all.
rindex = 0 # only output one radius
sizetuple=(8,8)

vr = ss.vals[:,:,rindex,ss.lut[1],tindex]
fig, ax = plt.subplots(figsize=sizetuple)

img = plt.imshow(numpy.transpose(vr), extent=[0,360,-90,90])
ax.set_xlabel( 'Longitude')
ax.set_ylabel( 'Latitude')
ax.set_title( 'Radial Velocity')

plt.tight_layout()
plt.show()

By running the cell below, we can plot different output quantities on a spherical surface. In the example
shown here, we plot all three velocity components (𝑢𝑟, 𝑢𝜃 and 𝑢𝜑) projected onto a spherical surface. For
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demonstration purposes, we illustrate each velocity component using different colormaps, at different latitu-
dinal centers of vantage point etc. (for more details see comments within cell below as well as the Jupyter
notebook titled “plot_shells.ipynb”).

Note that in order to successfully run the cell below, you also need to have the orthographic projection code
“projection.py” within the same directory/folder as this notebook.

[ ]: import numpy
import matplotlib.pyplot as plt
from matplotlib import gridspec
from rayleigh_diagnostics import Shell_Slices
from projection import plot_ortho

# This plots various data from a single shell_slice file.
# 3 diferent plots in 1 row and 3 columns are created.
# It's easy to hack this to work with multiple files

s1=Shell_Slices('00040000')
data = numpy.zeros((s1.nphi,s1.ntheta),dtype='float64')
costheta = s1.costheta
nrows=2
ncols=2
pltin = 9 # Size of each subimage in inches (will be square)

# number of rows and columns
nrow=1
ncol=3

#We use gridspec to set up a grid. We actually have nrow*2 rows, with every␣
→˓other
#row being a 'spacer' row that's 10% the height of the main rows.
#This was the simplest way I could come up with the have the color bars appear␣
→˓nicely.
fig = plt.figure(constrained_layout=False, figsize=(pltin*ncol,pltin*nrow*1.1))
spec = gridspec.GridSpec(ncols=ncol, nrows=nrow*2, figure=fig, height_ratios=[1,.
→˓1]*nrow, width_ratios=[1]*ncol)

plt.rcParams.update({'font.size': 16})
#quantities codes to plot -- here all three velocity components
qi = [1,2, 3]
nm = [r'u$_r$', r'u$_\theta$', r'u$_\phi$']

qinds = [qi, qi] # Quantity codes to plot
names = [nm, nm] # Names for labeling

(continues on next page)
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lv = [[1]*ncol , [2]*ncol] # Shell levels to plot (top row is level 1, bottom␣
→˓row is level 2)

style1=['-','--',':']
style2=['-', '-', '-']
styles = [style1, style2] # Line style of grid lines

gwidth1=[0.5 , 1 , 1.5]
gwidth2=[1,1,1]
gwidths = [gwidth1, gwidth2] # width of grid lines for each image (Default: True)

hwidths1=[2.5,2.5,2.5] # Width of the horizon line or each image (Default: 2)
hwidths2=[2,2,2]
hwidths=[hwidths1,hwidths2]

cmaps1 = ["RdYlBu_r", "seismic", 'PiYG'] # A color table for each image␣
→˓(Default: RdYlBu_r)
cmaps2 = ["RdYlBu_r"]*4
cmaps = [cmaps1, cmaps1]

pgrids1 = [True, True, True]
pgrids2 = [True, True, True]
pgrids = [pgrids1, pgrids2] # Plot grids, or not for each image (Default: True)

latcens1 = [60, 45, 15]
latcens = [latcens1, latcens1] # Latitudinal center of vantage point (Default:␣
→˓45 N)

loncens1 = [0,0,0]
loncens2 = [30,30,30] # Longitudinal center of vantage point (Default: 0)
loncens = [loncens1,loncens2]

##########################################################
# If the grid is plotted, the number of latitude lines
# for the grid can be controlled via the nlats keyword.
# Default: 9
# Note that if nlats is even, the equator will not be drawn
nlats1 = [3,5,7]
nlats2 = [4,6,8]
nlats = [nlats1, nlats1]

##############################################################################
# Similarly, the nlons keyword can be used to control longitude lines
# More precisely, it controls the number of MERIDIANS (great circles) drawn
# Default: 8

(continues on next page)
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nlons1 = [4,8,12]
nlons2 = [4,12,16]
nlons = [nlons1,nlons1]

#Longitude grid-lines can be drawn in one of two ways:
# 1) Completely to the pole (polar_style = 'polar')
# 2) Truncated at the last line of latitue drawn (polar_style = 'truncated')
# Default: "truncated"
pstyle1 = ['truncated', 'polar', 'truncated']
pstyle = [pstyle1, pstyle1]

##############################################################
# We can also control the way in which the image is saturated
# via the scale_type keyword. There are three possibilities:
# 1) scale_type=['rms', a], where a is of type 'float'
# In this instance, the image bounds are -a*rms(data), +a*rms(data)
# 2) scale_type = ['abs', a]
# In this instance, the image bounds are -a*abs(data), +a*abs(data)
# 3) scale_type= ['force', [a,b]]
# In this instance, the image bounds are a,b
# 4) scale_type = [None,None]
# In this instance, the image bounds are min(image), max(image)
# Default: [None,None]
# Note that rms and abs are taken over projected image values, not input data
# (you only see half the data in the image)

scale_type1 = [['rms',2.0 ], [None,None], ['abs', 0.5]]
scale_type2 = [['force', [-1500,1500]], ['force',[-10000,10000]], ['rms',2.5]]
scale_types = [scale_type1, scale_type1]

# Number of pixels across each projected, interpolated image
# 768 is the default and seems to do a reasonable job
nyzi = 768

for j in range(ncol):
for i in range(nrow):

data[:,:] = s1.vals[:,:,lv[i][j],s1.lut[qinds[i][j]],0]

row_ind = 2*i # skip over space allowed for color bars
col_ind = j

print("ROW/COL: ", row_ind, col_ind)
(continues on next page)
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ax = fig.add_subplot(spec[row_ind,col_ind])
cspec = spec[row_ind+1,col_ind]
caxis=None

plot_ortho(data,s1.costheta,fig,ax,caxis, hwidth=hwidths[i][j],␣
→˓gridstyle=styles[i][j],

gridwidth=gwidths[i][j], nyz=nyzi, colormap=cmaps[i][j],
plot_grid=pgrids[i][j], latcen=latcens[i][j], loncen=␣

→˓loncens[i][j],
pole_style=pstyle[i][j], nlats = nlats[i][j],scale_type=scale_

→˓types[i][j])
ptitle=names[i][j]+" (r_index = "+str(lv[i][j])+")"
ax.set_title(ptitle)

# You can save the plot as a figure
#plt.savefig('flows.pdf')

VIII. Spherical Harmonic Spectra

Summary: Spherical Harmonic Spectra sampled at discrete radii.

Subdirectory: Shell_Spectra

main_input prefix: shellspectra

Python Classes:
• Shell_Spectra : Complete data structure associated with Shell_Spectra outputs.

• PowerSpectrum : Reduced data structure – contains power spectrum of velocity and/or magnetic fields
only.

Additional Namelist Variables:
• shellspectra_levels (indicial) : indices along radial grid at which to output spectra.

• shellspectra_levels_nrm (normalized) : normalized radial grid coordinates at which to output spectra.

The shell-spectra output type allows us to examine the spherical harmonic decomposition of output variables
at discrete radii.

Examining the main_input file, we see that the following output values have been denoted for the Shell
Spectra (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description
1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

Spherical harmonic spectra can be read into Python using either the Shell_Spectra or PowerSpectrum
classes.
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The Shell_Spectra class provides the full complex spectra, as a function of degree ell and azimuthal order
m, for each specified output variable. It possesses an attribute named lpower that contains the associated
power for each variable, along with its m=0 contributions separated and removed.

The Power_Spectrum class can be used to read a Shell_Spectra file and quickly generate a velocity or
magnetic-field power spectrum. For this class to work correctly, your file must contain all three components
of either the velocity or magnetic field. Other variables are ignored (use Shell_Spectrum’s lpower for those).

We illustrate how to use these two classes below. As usual, we call the help() function to display the docstrings
that describe the different data structures embodied by each class.

[ ]: import matplotlib.pyplot as plt
from matplotlib import ticker
import numpy
from rayleigh_diagnostics import Shell_Spectra, Power_Spectrum
istring = '00040000'

tind = 0
rind = 0
#help(ss)

vpower = Power_Spectrum(istring)
help(vpower)
power = vpower.power

fig, ax = plt.subplots(nrows=3, figsize=(6,6))
ax[0].plot(power[:,rind,tind,0])
ax[0].set_xlabel(r'Degree $\ell$')
ax[0].set_title('Velocity Power (total)')

ax[1].plot(power[:,rind,tind,1])
ax[1].set_xlabel(r'Degree $\ell$')
ax[1].set_title('Velocity Power (m=0)')

ax[2].plot(power[:,rind,tind,2])
ax[2].set_xlabel(r'Degree $\ell$')
ax[2].set_title('Velocity Power ( total - {m=0} )')

plt.tight_layout()
plt.show()

fig, ax = plt.subplots()
ss = Shell_Spectra(istring)
help(ss)
mmax = ss.mmax
lmax = ss.lmax

(continues on next page)
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power_spectrum = numpy.zeros((lmax+1,mmax+1),dtype='float64')

for i in range(1,4): # i takes on values 1,2,3
qind=ss.lut[i]
complex_spectrum = ss.vals[:,:,rind,qind,tind]
power_spectrum = power_spectrum+numpy.real(complex_spectrum)**2 + numpy.

→˓imag(complex_spectrum)**2

power_spectrum = numpy.transpose(power_spectrum)

tiny = 1e-6
img=ax.imshow(numpy.log10(power_spectrum+tiny), origin='lower')
ax.set_ylabel('Azimuthal Wavenumber m')
ax.set_xlabel(r'Degree $\ell$')
ax.set_title('Velocity Power Spectrum')

#colorbar ...
cbar = plt.colorbar(img) # ,shrink=0.5, aspect = 15)
cbar.set_label('Log Power')

tick_locator = ticker.MaxNLocator(nbins=5)
cbar.locator = tick_locator
cbar.update_ticks()
cbar.ax.tick_params() #font size for the ticks

plt.show()

IX. Point Probes

Summary: Point-wise sampling of desired output variables.

Subdirectory: Point_Probes

main_input prefix: point_probe

Python Class: Point_Probes

Additional Namelist Variables:
• point_probe_r : radial indices for point-probe output

• point_probe_theta : theta indices for point-probe output

• point_probe_phi : phi indices for point-probe output

• point_probe_r_nrm : normalized radial coordinates for point-probe output

• point_probe_theta_nrm : normalized theta coordinates for point-probe output
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• point_probe_phi_nrm : normalized phi coordinates for point-probe output

• point_probe_cache_size : number of time-samples to save before accessing the disk

Point-probes allow us to sample a simulation at an arbitrary set of points. This output type serves two
purposes: 1. It provides an analog to laboratory measurements where slicing and averaging are difficult, but
taking high-time-cadence using (for example) thermistors is common-practice. 2. It provides an alternative
method of slicing a model ( for when equatorial, meridional, or shell slices do yield the desired result).

IX.1 Specifying Point-Probe Locations

Point-probe locations are indicated by specifying a grid. The user does not supply a set of ordered coordinates
(r,theta,phi). Instead, the user specifies nodes on the grid using the namelist variables described above.
Examples follow.

Example 1: 4-point Coarse Grid

point_probe_r_nrm = 0.25, 0.5
point_probe_theta_nrm = 0.5
point_probe_phi_nrm = 0.2, 0.8

This example would produce point probes at the four coordinates { (0.25, 0.5, 0.2), (0.25, 0.5, 0.8), (0.5, 0.5,
0.2), (0.5,0.5,0.8) } (r,theta,phi; normalized coordinates).

Example 2: “Ring” in Phi

point_probe_r_nrm = 0.5
point_probe_theta_nrm = 0.5
point_probe_phi_nrm = 0.0, -1.0

This example describes a ring in longitude, sampled at mid-shell, in the equatorial plane. We have made use
of the positional range feature here by indicating normalized phi coordinates of 0.0, -1.0. Rayleigh intreprets
this as an instruction to sample all phi coordinates.

** Example 3: 2-D Surface in (r,phi) **

point_probe_r_nrm = 0, -1.0
point_probe_theta_nrm = 0.25
point_probe_phi_nrm = 0, -1.0

This example uses the positional range feature along with normalized coordinates to generate a 2-D slice in
r-phi at theta = 45 degrees (theta_nrm = 0.25). Using the syntax 0,-1.0 instructs Rayleigh to grab all r and
phi coordinates.

** Example 4: 3-D Meridional “Wedges” **
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point_probe_r_nrm = 0.0, -1.0
point_probe_theta_nrm = 0.0, -1.0
point_probe_phi_nrm = 0.20, -0.30, 0.7, -0.8

This example generates two 3-D wedges described by all r,theta points and all longitudes in the ranges [72
deg, 108 deg] and [252 deg, 288 deg].

IX.2 Point-Probe Caching

When performing sparse spatial sampling using point-probes, it may be desireable to output with a high-time
cadence. As this may cause disk-access patterns characterized by frequent, small writes, the point-probes
are programmed with a caching feature. This feature is activated by specifing the point_probe_cache_size
variable in the output namelist.

This variable determines how many time-samples are saved in memory before a write is performed. Its
default value is 1, which means that the disk is accessed with a frequency of point_probe_frequency. If the
cache size is set to 10 (say), then samples are still peformed at point_probe_frequency but they are only
written to disk after 10 have been collected in memory.

NOTE: Be sure that point_probe_cache_size divides evenly into point_probe_nrec.

IX.3 Example: Force-Balance with Point Probes

Our example input file specifies a coarse, six-point grid. Examining the main_input file, we see
that all variables necessary to examine the force balance in each direction have been specified. (see
rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description
1 Radial Velocity
2 Theta Velocity
3 Phi Velocity
1201 Radial Advection (v dot grad v)
1202 Theta Advection
1203 Phi Advection
1216 Buoyancy Force (ell=0 component subtracted)
1219 Radial Coriolis Force
1220 Theta Coriolis Force
1221 Phi Coriolis Force
1228 Radial Viscous Force
1229 Theta Viscous Force
1230 Phi Viscous Force

Note that the pressure force appears to be missing. This is not an oversight. The diagnostic nature of the
Pressure equation in incompressible/anelastic models, coupled with the second-order Crank-Nicolson time-
stepping scheme, means that the pressure field can exhibit an even/odd sawtoothing in time. The effective
pressure force (as implemented through the Crank-Nicolson scheme) is always a weighted average over two
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time steps and is always well-resolved in time.

When sampling at regular intervals as we have here, if we directly sample the pressure force, we will sample
either the high or low end of the sawtooth envelope, and the force balance will be off by a large factor. The
easiest fix is to output the velocity field and compute its time derivative. This, in tandem with the sum of
all other forces, can be used to calculate the effective pressure as a post-processing step. The (undesireable)
alternative is to output once every time step and compute the effective pressure using the Crank-Nicolson
weighting.

We demonstrate how to compute the effective pressure force via post-processing in the example below.

[ ]: from rayleigh_diagnostics import Point_Probes, build_file_list
import numpy
from matplotlib import pyplot as plt

#Decide which direction you want to look at (set direction = {radial,theta, or␣
→˓phi})
#This is used to determine the correct quantity codes below
radial = 0
theta = 1
phi = 2
direction=radial
# Build a list of all files ranging from iteration 0 million to 1 million
files = build_file_list(0,1000000,path='Point_Probes')
nfiles = len(files)-1

for i in range(nfiles):
pp = Point_Probes(files[i],path='')
if (i == 0):

nphi = pp.nphi
ntheta = pp.ntheta
nr = pp.nr
nq = pp.nq
niter = pp.niter
vals=numpy.zeros( (nphi,ntheta,nr,nq,niter*nfiles),dtype='float64')
time=numpy.zeros(niter*nfiles,dtype='float64')

vals[:,:,:,:, i*niter:(i+1)*niter] = pp.vals
time[i*niter:(i+1)*niter]=pp.time

istring='00040000' # iteration to examine
help(pp)
##################################################
# We choose the coordinate indices **within**
# the Point-Probe array that we want to examine
# These indices start at zero and run to n_i-1
# where n_i is the number of points sampled in
# the ith direction

(continues on next page)
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# Use help(pp) after loading the Point-Probe file
# to see the Point-Probe class structure

pind = 0 # phi-index to examine
rind = 0 # r-index to examine
tind = 0 # theta-index to examine

pp = Point_Probes(istring)
lut = pp.lut

nt = pp.niter

#######################################################################
# Grab velocity from the point probe data
u = vals[pind,0,rind,pp.lut[1+direction],:]
dt=time[1]-time[0]

###########################################################################
# Use numpy to compute time-derivative of u
# (necessary to compute a smooth effective pressure without outputing every␣
→˓timestep)

#Depending on Numpy version, gradient function takes either time (array) or dt␣
→˓(scalar)
try:

dudt = numpy.gradient(u,time)
except:

dt = time[1]-time[0] # Assumed to be constant...
dudt = numpy.gradient(u,dt)

################################################################
# Forces (modulo pressure)
# Note the minus sign for advection. Advective terms are output as u dot grad u,
→˓ not -u dot grad u
advec = -vals[ pind, tind, rind, lut[1201 + direction], :]
cor = vals[ pind, tind, rind, lut[1219 + direction], :]
visc = vals[ pind, tind, rind, lut[1228 + direction], :]
forces = visc+cor+advec
if (direction == radial):

buoy = vals[ pind, tind, rind, lut[1216], :]
forces = forces+buoy

(continues on next page)
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############################################3
# Construct effective pressure force
pres = dudt-forces
forces = forces+pres
############################################################
# Set up the plot
yfsize='xx-large' # size of y-axis label

ustrings = [r'u_r', r'u_\theta', r'u_\phi']
ustring=ustrings[direction]
dstring = r'$\frac{\partial '+ustring+'}{\partial t}$'
fstrings = [r'$\Sigma\,F_r$' , r'$\Sigma\,F_\theta$' , r'$\Sigma\,F_\phi$' ]
fstring = fstrings[direction]
diff_string = dstring+' - '+fstring

pstring = 'pressure'
cstring = 'coriolis'
vstring = 'viscous'
bstring = 'buoyancy'
fig, axes = plt.subplots(nrows=2, figsize=(7*2.54, 9.6))
ax0 = axes[0]
ax1 = axes[1]

########################################
# Upper: dur/dt and F_total
#mpl.rc('xtick', labelsize=20) --- still trying to understand xtick label size etc.
#mpl.rc('ytick', labelsize=20)

ax0.plot(time,forces, label = fstring)
ax0.plot(time,pres,label=pstring)
ax0.plot(time,cor,label=cstring)
ax0.plot(time,visc,label=vstring)
if (direction == radial):

ax0.plot(time,buoy,label=bstring)
ax0.set_xlabel('Time', size=yfsize)

ax0.set_ylabel('Acceleration', size=yfsize)
ax0.set_title('Equilibration Phase',size=yfsize)
ax0.set_xlim([0,0.1])
leg0 = ax0.legend(loc='upper right', shadow=True, ncol = 1, fontsize=yfsize)

##########################################
# Lower: Numpy Gradient Approach

(continues on next page)
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(continued from previous page)

ax1.plot(time,forces,label=fstring)
ax1.plot(time,pres,label=pstring)
ax1.plot(time,cor,label=cstring)
ax1.plot(time,visc,label=vstring)
if (direction == radial):

ax1.plot(time,buoy,label=bstring)
ax1.set_title('Late Evolution',size=yfsize)
ax1.set_xlabel('Time',size=yfsize)
ax1.set_ylabel('Acceleration', size =yfsize)
ax1.set_xlim([0.2,4])
leg1 = ax1.legend(loc='upper right', shadow=True, ncol = 1, fontsize=yfsize)

plt.tight_layout()
plt.show()

X. Modal Outputs

Summary: Spherical Harmonic Spectral Coefficients sampled at discrete radii and degree ell.

Subdirectory: SPH_Modes

main_input prefix: sph_mode

Python Classes: SPH_Modes

Additional Namelist Variables:
• sph_mode_levels (indicial) : indices along radial grid at which to output spectral coefficients.

• sph_mode_levels_nrm (normalized) : normalized radial grid coordinates at which to output spectral
coefficients.

• sph_mode_ell : Comma-separated list of spherical harmonic degree ell to output.

The Modal output type allows us to output a restricted set of complex spherical harmonic coefficients at
discrete radii. For each specified ell-value, all associated azimuthal wavenumbers are output.

This output can be useful for storing high-time-cadence spectral data for a few select modes. In the example
below, we illustrate how to read in this output type, and we plot the temporal variation of the real and complex
components of radial velocity for mode ell = 4, m = 4.

Examining the main_input file, we see that the following output values have been denoted for the Shell
Spectra (see rayleigh_output_variables.pdf for mathematical formulae):

Menu Code Description
1 Radial Velocity
2 Theta Velocity
3 Phi Velocity

We also see that ell=2,4,8 have been selected in the main_input file, leading to power at the following modes:
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ell-value m-values
2 0,1,2
4 0,1,2,3,4
8 0,1,2,3,4,5,6,7,8

[ ]: from rayleigh_diagnostics import SPH_Modes, build_file_list
import matplotlib.pyplot as plt
import numpy

qind = 1 # Radial velocity
rind = 0 # First radius stored in file

files = build_file_list(0,1000000,path='SPH_Modes')
nfiles = len(files)
for i in range(nfiles):

spm = SPH_Modes(files[i],path='')
if (i == 0):

nell = spm.nell
nr = spm.nr
nq = spm.nq
niter = spm.niter
lvals = spm.lvals
max_ell = numpy.max(lvals)
nt = niter*nfiles
vr = spm.lut[qind]
vals=numpy.zeros( (max_ell+1,nell,nr,nq,nt),dtype='complex64')
time=numpy.zeros(nt,dtype='float64')

vals[:,:,:,:, i*niter:(i+1)*niter] = spm.vals
time[i*niter:(i+1)*niter]=spm.time

help(spm)
#####################################################3
# Print some information regarding the bookkeeping
print('...........')
print(' Contents')
print(' nr = ', nr)
print(' nq = ', nq)
print(' nt = ', nt)
for i in range(nell):

lstring=str(lvals[i])
estring = 'Ell='+lstring+' Complex Amplitude : vals[0:'+lstring+','+str(i)+',

→˓0:nr-1,0:nq-1,0:nt-1]'
print(estring)

print(' First dimension is m-value.')
print('...........')

(continues on next page)
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######################################
# Create a plot of the ell=4, m=4 real and imaginary amplitudes
radius = spm.radius[rind]
lfour_mfour = vals[4,1,rind,vr,:]
fig, ax = plt.subplots()
ax.plot(time,numpy.real(lfour_mfour), label='real part')
ax.plot(time,numpy.imag(lfour_mfour), label='complex part')
ax.set_xlabel('Time')
ax.set_ylabel('Amplitude')
rstring = "{0:4.2f}".format(radius)
ax.set_title(r'Radial Velocity ( $\ell=4$ , m=4, radius='+rstring+' ) ')
ax.legend(shadow=True)
ax.set_xlim([0.5,4.0])
plt.show()

[ ]:

1.6.3 3-D Visualization with VAPOR

Rayleigh’s Spherical_3D data can be visualized using volume rendering software such as Paraview or VAPoR
.

The following video walks through the process of formatting Rayleigh data for VAPoR. You can do this with
your own data or with the sample data referenced in the video. That data can now be found here .

https://www.youtube.com/embed/U-SgJYoX3q8

1.6.4 Common Diagnostics

1.7 Contributing to Rayleigh

Rayleigh is a community project that lives by the participation of its members — i.e., including you! It
is our goal to build an inclusive and participatory community so we are happy that you are interested in
participating!
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1.7.1 Getting started with git and GitHub

GitHub provides a helpful guide on the process of contributing to an open-source project here.

1.7.2 Asking and answering questions about Rayleigh

The Rayleigh community maintains an active forum hosted by CIG here.

1.7.3 Bug reports

It is a great help to the community if you report any bugs that you may find. We keep track of all open issues
related to Rayleigh here.

Please follow these simple instructions before opening a new bug report:

• Do a quick search in the list of open and closed issues for a duplicate of your issue.

• Do a google search in the archived mailing list discussions for a duplicate of your issue by searching
for

your search term site:http://lists.geodynamics.org/pipermail/geodyn/

• If you did not find an answer, open a new issue and explain your problem in as much detail as possible.

• Attach as much as possible of the following information to your issue:

– a minimal parameter file that reproduces the issue,

– the error message you saw on your screen,

– any information that helps us understand why you think this is a bug, and how to reproduce it.

1.7.4 Making Rayleigh better

Rayleigh is a community project, and we are encouraging all kinds of contributions. Much appreciated con-
tributions are new examples (cookbooks, tests, or benchmarks), extended documentation (every paragraph
helps), and in particular fixing typos or updating outdated documentation. Obviously, we also encourage
contributions to the core functionality in any form! If you consider making a larger contribution to the core
functionality, please open a new issue first, to discuss your idea with one of the maintainers. This allows
us to give you early feedback and prevents you from spending much time on a project that might already be
planned, or that conflicts with other plans.

To make a change to Rayleigh you should:

• Create a fork (through GitHub) of the code base.

• Create a separate branch (sometimes called a feature branch) on which you do your modifications.

• You can propose that your branch be merged into the Rayleigh code by opening a pull request. This
will give others a chance to review your code.

If you want to modify the documentation and preview your changes locally, you can find instructions for
compiling the documentation in the INSTALL file.

We follow the philosophy that no pull request (independent of the author) is merged without a review from
one other member of the community, and approval of one of the maintainers. This applies to maintainers as
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well as to first-time contributors. We know that a review can be a daunting process, but pledge to keep all
comments friendly and supportive! We are as interested in making Rayleigh better as you are!

While this seems very formal, keeping all of the code review in one place makes it easier to coordinate
changes to the code (and there are usually several people making changes to the code at once). Please do not
hesitate to ask questions about the workflow on the mailing list if you are not sure what to do.

If you add new Fortran files or change the module structure of Rayleigh, the dependencies in the makefile
have to be updated. This is done by running make fdeps from the main repository directory, which modifies
the file src/Makefile.fdeps. Commit this file along with your changes. You need the makedepf90 tool
on your development machine to perform this update. makedepf90 is available in most package managers.

This is a placeholder for a paragraph about coding conventions

If you are new to the project then we will work with you to ensure your contributions are formatted with this
style, so please do not think of it as a road block if you would like to contribute some code.

1.7.5 Acknowledgment of contributions

While we are grateful for every contribution, there are also several official ways how your contribution will
be acknowledged by the Rayleigh community:

• Every commit that was merged into the Rayleigh repository will make you part of the growing group
of Rayleigh contributors.

• If you contributed a significant part of the manual (such as a new cookbook, benchmark, or subsection),
you will be listed as one of the contributing authors of the manual.

• Regularly, the Principal Developers of Rayleigh come together and discuss based on the contributions
of the last years who should be invited to join the group of Principal Developers. Criteria that Principal
Developers should match are:

– A profound understanding of Rayleigh’s structure and vision,

– A proven willingness to further the project’s goals and help other users,

– Significant contributions to Rayleigh (not necessarily only source code, also mailing list advice,
documentation, benchmarks, tutorials),

– Regular and active contributions to Rayleigh for more than one year, not restricted to user meet-
ings.

The group of current Principal Developers is listed in the AUTHORS file in the main repository.

1.7.6 License

Rayleigh is published under the GPL v3 or newer; while you will retain copyright on your contributions, all
changes to the code must be provided under this common license.
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1.8 Troubleshooting

If you have questions that go beyond this manual, there are a number of resources:

• For questions on the source code of Rayleigh, portability, installation, new or existing features, etc.,
use the Rayleigh forum at <https://community.geodynamics.org/c/rayleigh>.

• In case of more general questions about mantle convection, you can ask on the CIG mantle convection
forum at <https://community.geodynamics.org/c/dynamo>.

• If you have specific questions about Rayleigh that are not suitable for public and archived fo-
rums, you can contact the primary developers as listed at <https://github.com/geodynamics/Rayleigh/
#more-information>.

1.8.1 Compiling Errors

Need text here.

1.8.2 Segmentation Fault Crashes

Need test here.

1.8.3 Timestep Crashes

Need text here.

1.8.4 Numerical Ringing

Need text here.

122 Chapter 1. User Guide

https://community.geodynamics.org/c/rayleigh
https://community.geodynamics.org/c/dynamo
https://github.com/geodynamics/Rayleigh/#more-information
https://github.com/geodynamics/Rayleigh/#more-information


Rayleigh

1.9 References
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1.10 Under Development

1.10.1 Arbitrary Scalar Fields

Rayleigh can solve for additional active, 𝜒𝑎𝑖 , (coupled to the momentum equation through buoyancy) or
passive, 𝜒𝑝𝑖 , scalar fields (where 𝑖 can range up to 50 for each type of scalar). Both types of field follow a
simple advection-diffusion equation:

𝜕𝜒𝑎,𝑝𝑖

𝜕𝑡
+ 𝑣 ·∇𝜒𝑎,𝑝𝑖 = 0 (1.37)

The number of each type of field can be set using, e.g.:

&physical_controls_namelist
n_active_scalars = 2
n_passive_scalars = 2
/

Other model parameters follow the same convention as temperature but using the prefix chi_a or chi_p for
active and passive scalars respectively.

See tests/chi_scalar for example input files.
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CITING RAYLEIGH

We ask that you cite the appropriate references if you publish results that were obtained in some part using
Rayleigh. Receiving citations for Rayleigh is important to demonstrate the relevance of our work to our
funding agencies and is a matter of fairness to all the developers that have donated their effort and time to
make Rayleigh what it is today.

Please cite the code as: Featherstone, Nicholas A., Edelmann, Philipp V. F., Gassmoeller, Rene, Matilsky,
Loren I., Orvedahl, Ryan J., & Wilson, Cian R. (2022). Rayleigh Version 1.1.0 (v1.1.0). Zenodo.
https://doi.org/10.5281/zenodo.6522806

To cite other versions of the code, please see: https://geodynamics.org/resources/rayleigh/howtocite

@Software{featherstone_et_al_2022,
author = "{Featherstone}, N.~A. and {Edelmann}, P.~V.~F. and {Gassmoeller},

→˓ R. and {Matilsky}, L.~I. and {Orvedahl}, R.~J. and {Wilson}, C.~R.",
title="Rayleigh 1.1.0",
year="2022",
organization="",
optkeywords="Rayleigh",
doi="http://doi.org/10.5281/zenodo.6522806",
opturl="https://doi.org/10.5281/zenodo.6522806"}

Please also cite the following references:

Featherstone, N.A.; Hindman, B.W. (2016), The spectral amplitude of stellar convection and
its scaling in the high-rayleigh-number regime, The Astrophysical Journal, 818 (1) , 32, DOI:
10.3847/0004-637X/818/1/32

Matsui, H. et al., 2016, Performance benchmarks for a next generation numerical dynamo model,
Geochem., Geophys., Geosys., 17,1586 DOI: 10.1002/2015GC006159

@Article{,
author = "Featherstone, N.A. and Hindman, B.W.",
title="The Spectral Amplitude Of Stellar Convection And Its Scaling In The High-
→˓Rayleigh-Number Regime",
year="2016",
journal="The Astrophysical Journal",
volume="818",
number="1",
pages="32",

(continues on next page)
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(continued from previous page)

optkeywords="Rayleigh",
issn="1538-4357",
doi="http://doi.org/10.3847/0004-637X/818/1/32",
opturl="http://stacks.iop.org/0004-637X/818/i=1/a=32?key=
crossref.a90f82507dd0eeb7a6e7562d1e4b0210"}

@Article{Matsui_etal_2016,
author = "Matsui, H. and Heien, E. and Aubert, J. and Aurnou, J.M. and Avery, M.␣
→˓and Brown, B. and Buffett, B.A. and Busse, F. and Christensen, U.R. and Davies,
→˓ C.J. and Featherstone, N. and Gastine, T. and Glatzmaier, G.A. and Gubbins, D.
→˓ and Guermond, J.-L. and Hayashi, Y.-Y. and Hollerbach, R. and Hwang, L.J. and␣
→˓Jackson, A. and Jones, C.A. and Jiang, W. and Kellogg, L.H. and Kuang, W. and␣
→˓Landeau, M. and Marti, P.H. and Olson, P. and Ribeiro, A. and Sasaki, Y. and␣
→˓Schaeffer, N. and Simitev, R.D. and Sheyko, A. and Silva, L. and Stanley, S.␣
→˓and Takahashi, F. and Takehiro, S.-ichi and Wicht, J. and Willis, A.P.",
title="Performance benchmarks for a next generation numerical dynamo model",
year="2016",
journal="Geochemistry, Geophysics, Geosystems",
volume="17",
number="5",
pages="1586-1607",
optkeywords="Calypso",
issn="1525-2027",
doi="http://doi.org/10.1002/2015GC006159",
opturl="http://doi.wiley.com/10.1002/2015GC006159"
}

Rayleigh’s development is supported by the National Science Foundation through the Dynamo Work-
ing Group of the Computational Infrastructure for Geodynamics (CIG, https://geodynamics.org/groups/
dynamo).

Please acknowledge CIG support in your work as follows:

Note: Rayleigh is hosted and receives support from the Computational Infrastructure for Geo-
dynamics (CIG) which is supported by the National Science Foundation awards NSF-0949446,
NSF-1550901 and NSF-2149126.
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2.1 Publishing

Open research statements are now a common requirement when publishing research. These support reuse,
validation, and citation and often take the form of Data availability, Data access, Code availability, Open
Research, and Software availability statements. We recommend depositing input files that allow your pub-
lished research to be reproduced and output model data in support of your research outcomes and figures. In
addition, consider depositing model files that may be reused by others.

Remember to cite software and data in your text as well as in your Data Availability or similar statement.

Files should be deposited in an approved repository.

Additional information on Publishing <https://geodynamics.org/software/software-bp/software-publishing
is available on the CIG website.

2.1.1 Data

Input parameters
• Main_input, *_input

• Data files for custom: * profiles, * boundary conditions, * generic initial conditions, * reference states
(coefficients)

• Basic simulation information e.g. grid, job

Model output
Data products/checkpoints for the cases used in your publication.

2.1.2 Repository

The Rayleigh Simulation Library (RSL), a repository for accessing published Rayleigh datasets has been
established using the Open Science Framework (OSF) at the University of Colorado Boulder. For more
information on this repository and preparing your datasets see the RSL home page: https://osf.io/j275z/

2.1.3 Template

We use Rayleigh version number (Featherstone et al., XXXX; Featherstone and Hindman, 2016,
Matsui et al., 2016) which is available for download through its software landing page https:
//geodynamics.org/resources/rayleigh or from Zenodo<insert PID>. Model data necessary to
reproduce these results including <insert a description> can be downloaded from Zenodo <insert
PID> (Authors, YYYY).

Featherstone, N.A.; Hindman, B.W. (2016), The spectral amplitude of stellar convection and
its scaling in the high-rayleigh-number regime, The Astrophysical Journal, 818 (1) , 32, DOI:
10.3847/0004-637X/818/1/32

Matsui, H. et al., 2016, Performance benchmarks for a next generation numerical dynamo model,
Geochem., Geophys., Geosys., 17,1586 DOI: 10.1002/2015GC006159

Authors (ZZZZ), . . . .

2.1. Publishing 127

https://osf.io/j275z/
https://geodynamics.org/resources/rayleigh
https://geodynamics.org/resources/rayleigh


Rayleigh

Where XXXX refers to the appropriate year of the software version cited and Authors (ZZZZ) is the citation
to the data.

IOP <https://publishingsupport.iopscience.iop.org/iop-publishing-standard-data-policy/> (The Astrophysical Journal) recommends the following form:
The data that support the findings of this study are openly available at the following URL/DOI: [insert
web link or DOI to the data].

See above or https://geodynamics.org/resources/rayleigh/howtocite for the citation to the version used.

2.1.4 Published examples

https://doi.org/10.5281/zenodo.7117668

2.2 Acknowledging

Rayleigh’s implementation of the pseudo-spectral algorithm and its parallel design would not have been
possible without earlier work by Gary Glatzmaier and Thomas Clune described in: [Gla84], [GCE+99]

Glatzmaier, G.A., 1984, Numerical simulations of stellar convective dynamos. I. the model and
method, J. Comp. Phys., 55(3), 461-484. ISSN 0021-9991, doi:10.1016/0021-9991(84)90033-
0.

Clune, T.C., Elliott, J.R., Miesch, M.S.,Toomre, J., and Glatzmaier, G.A., 1999, Computational
aspects of a code to study rotating turbulent convection in spherical shells, Parallel Comp., 25,
361-380.
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THREE

ACCESSING AND SHARING MODEL DATA

3.1 Accessing Available Datasets

Rayleigh model configurations and checkpoint data of several publications can be accessed here:

• https://osf.io/j275z/

• https://osf.io/qbt32/

• https://doi.org/10.5281/zenodo.7117668

A large number of Rayleigh simulations were generated as part of the INCITE project “Frontiers in Planetary
and Stellar Magnetism Through High Performance Computing” supported by the Department of Energy and
the Computational Infrastructure for Geodynamics. Results and publications of this project can be found
here:

• https://geodynamics.org/groups/dynamo/frontiers

• https://incite.readthedocs.io/en/latest/

3.2 Sharing Your Rayleigh Data

If you want to share your Rayleigh data, please follow our established best practics:

Under construction.
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FOUR

RESEARCH ENABLED BY RAYLEIGH

4.1 Research Projects

Under construction.

One of the research projects using Rayleigh: https://geodynamics.org/groups/dynamo/frontiers.
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4.2 Video Gallery

4.2.1 Rotating

https://www.youtube.com/embed/3iRggdo3i0I https://www.youtube.com/embed/1KArtuLYUmY https://
www.youtube.com/embed/OUICRNiFhpU
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4.3 Publications

A list of publications using the Rayleigh code.

4.3.1 Software Citation

List: [Fea18a], [Fea18b]

4.3.2 Publications by Year

2019

List: [BM19]

2018

List: [KMB18], [MXF+18], [OCFH18]

2017

blank

2016

List: [FH16], [MHA+16], [OMaraMFA16]

4.3.3 Co-Author Network

Network diagram illustrates the relationship between authors of the above publications.
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QUICK REFERENCE

5.1 Input parameters

This page provides a quick reference for all supported namelist variables in the main_input file.

5.1.1 Problemsize

This namelist is used to specify the grid.

n_r Number of radial points in model grid

rmin Radius of the inner domain boundary, 𝑟min

rmax Radius of the outer domain boundary, 𝑟max

aspect_ratio 𝑟min/𝑟max

shell_depth 𝑟max − 𝑟min

n_theta Number of theta points in the model grid, 𝑁𝜃

l_max Truncation degree ℓmax used in the spherical harmonic expansion

n_l ℓmax + 1

nprow Number of MPI ranks within each row of the 2-D process grid

npcol Number of MPI ranks within each column of the 2-D process grid

ncheby Comma-separated list indicating number of Chebyshev polynomials used in each radial subdomain
(e.g., 16, 32, 16). Default: n_r [ single domain]

dealias_by Comma-separated list indicating number of Chebyshev modes dealiased to zero. Default is 2/3
ncheby.

domain_bounds The domain bounds defining each Chebyshev subdomain

n_uniform_domains Number of uniformly-sized Chebyshev domains spanning the depth of the shell. De-
fault: 1

uniform_bounds When set to .true., each chebyshev subdomain will possess the same radial extent. Default:
.false.

dr_weights Comma-separated list of of real-valued numbers that defines the relative weighting of grid-
point spacing between subregions of uniform grid spacing when working with finite-differences and a
nonuniform mesh. If left unspecified, a uniform grid spanning from rmin to rmax will be employed.
dr_weights should contain the same number of elements as nr_count. Additional details may be found
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here.

nr_count Comma-separated list of integer numbers that defines the number of radial points within each
region of uniform grid spacing. nr_count must contain the same number of elements as dr_weights.
When nr_count and dr_weights are specified, any value of n_r specified in main_input is ignored, and
n_r is instead set to SUM(nr_count). Details are provided here.

radial_grid_file String variable indicating the name of a grid-description file. When specified, and when
finite-difference mode is active, Rayleigh will use the contents of this file to define the radial grid.
Instructions for generating this file in the proper format are provided here.

rescale_radial_grid Logical variable. When set to .true., the contents of radial_grid_file will be rescaled
so that rmin and rmax coincide with any values specified in main_input. Default value = .false.

5.1.2 Numerical Controls

This namelist provides access to Rayleigh’s run-time optimization options.

band_solve For use with models employing either a finite-difference scheme or at least three Chebyshev
domains in radius. In those models, the rows of the normally dense matrices used in the Crank-Nicolson
scheme may be rearranged into a banded or block-banded form for finite-difference and Chebyshev
methods respectively. Setting this variable to .true. will perform this rearrangement, and Rayleigh
will execute a band, rather than dense, solve during each timestep. Using the band-solve approach can
help save memory and may yield performance gains. No benefit is gained for models using one or two
Chebyshev domains. The default behavior is to use a dense solve (band_solve = .false.).

static_transpose When set to .true., buffer space used during Rayleigh’s transposes is allocated once at
runtime. The default behavior (static_tranpose=.false.) is to allocate and deallocate buffer space during
each transpose. On some machines, avoiding this cycle of allocation/deallocation has led to minor
performance improvements.

static_config When set to .true., sphericalbuffer configurations (e.g., p3a, s2b) are allocated once at runtime.
The default behavior (static_config=.false.) is to save memory by deallocating memory associated with
the prior configuration space following a transpose. If memory is not an issue, this may lead to minor
performance improvements on some systems.

pad_alltoall When set to .true., transpose buffers are padded throughout with zeros to enforce uniform mes-
sage size, and a standard alltoall is used for each transpose. The default behavior (pad_alltoall=.false.)
uses alltoallv and variable message sizes. Depending on the underlying alltoall algorithms in the MPI
implementation used, performance my differ between these two approaches.

chebyshev When set to .true. (the default setting), a Chebyshev collocation scheme will be employed in
radius. When set to .false., a 4th-order finite-difference scheme will instead be employed for the interior
points, and 2nd-order finite differences will be applied at the inner and outer radial boundaries.
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5.1.3 Physical Controls

This namelist controls the physical effects used in a Rayleigh simulation.

magnetism When set to .true., the MHD approximation is employed. The default (magnetism=.false.) is to
omit the effects of magnetism.

nonlinear When set to .false., all nonlinear terms are omitted in the model. The default (nonlinear=.true.)
is to include those terms.

momentum_advection When set to .false., 𝑣 ·∇𝑣 = 0. This flag is primarily for debugging purposes. The
default value is .true.

inertia When set to .false., the material derivative of velocity is omitted (𝐷𝑣
𝐷𝑡 = 0). This option is primarily

intended for mantle convection models. The default value is .true.

rotation When set to .true., the Coriolis term is included in the momentum equation. The default behavior
is to omit rotation in a Rayleigh model (rotation = .false.).

lorentz_forces Set this debugging/development flag to .false. to disable the Lorentz force. Default value is
.true., but this flag is ignored entirely when magnetism = .false.

viscous_heating Determines whether viscous heating is included in the thermal energy equation. Default
value is .true. Note that the user-supplied value of this variable is ignored entirely for Boussinesq
models run with reference_type = 1. In those models, viscous_heating is set to .false.

ohmic_heating Determines whether ohmic heating is included in the thermal energy equation. Default
value is .true. Note that the user-supplied value of this variable is ignored entirely for Boussinesq
models run with reference_type = 1. In those models, ohmic_heating is set to .false.

advect_reference_state Determines whether the reference-state entropy is advected. The default is .true.
When set to .false., the 𝑣𝑟

𝜕𝑆
𝜕𝑟 term is omitted in the thermal energy equation. Note that this variable

has no impact on models with an adiabatic background state.

benchmark_mode When set to a positive value in the interval [1,4], an accuracy benchmark will be per-
formed. The default is 0 (no benchmarking). Boussinesq benchmarks are peformed for values of 1
(nonmagnetic) and 2 (magnetic). Anelastic benchmarks are performed if benchmark_mode has a value
of 3 (nonmagnetic) or 4 (magnetic).

benchmark_integration_interval Determines the interval (in timesteps) between successive benchmark
snapshot analyses.

benchmark_report_interval Determines the interval (in timesteps) between successive benchmark report
outputs. Each output contains an average over all benchmark snapshot analyses performed since the
previous report.
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5.1.4 Temporal Controls

This namelist controls timing, time-stepping, and checkpointing in Rayleigh.

alpha_implicit Determines the value of 𝛼 used in the Crank-Nicolson semi-implicit time-stepping scheme
employed for linear terms. The default value is 0.5, which ensures second-order accuracy of the algo-
rithm. A value of 1 (0) describes a fully implicit (explicit) algorithm.

max_iterations Maximum number of timesteps for which to evolve a single instance of Rayleigh before
exiting the program. Note that this value does not describe the maximum number of timesteps a model
can be run for. Instead, it determines the maximum number of timesteps Rayleigh will run for during
a given session (i.e. following a single call to mpiexec/mpirun). The default value is 1,000,000.

max_time_minutes Maximum walltime (in minutes) for which to run a single instance of Rayleigh before
exiting. As with max_iterations, this is specific to a given Rayleigh session. Default is 108 minutes
(essentially, unlimited).

max_simulated_time The maximum time, in simulation units, for which to evolve a Rayleigh model.
Restarting a model that has already reached this limit will result in running for a single time step
before exiting. The default is effectively unlimited, with a value of 1020.

save_last_timestep When set to .true. (default), Rayleigh will checkpoint before exiting normally. Note
that this generally occurs when the maximum time or iterations is reached. This does not apply when
a job is terminated by the MPI job scheduler.

checkpoint_interval Number of iterations between successive checkpoint outputs. Default value is -1 (no
checkpointing).

check_frequency (deprecated) Same as checkpoint_interval.

quicksave_interval Number of iterations between successive quicksave outputs. Default value is -1 (no
quicksaves).

num_quicksaves Number of quicksave slots (i.e., rapid, rolling checkpoint folders) to use for a given sim-
ulation. Default value is 3.

quicksave_minutes Time in minutes between successive quicksaves. If this variable is set to a positive value
(default is -1), the value of quicksave_interval will be ignored.

max_time_step The maximum allowed time step. This value will respected even when if the CFL constraint
admits a larger time-step size. Default value is 1.0.

min_time_step The minimum allowable time step. If the CFL contraint forces a time-step size that falls
below this value, Rayleigh will exit.

cflmin Used for adaptive timestep control. Rayleigh ensures that the time-step size never falls below
𝑐𝑓𝑙𝑚𝑖𝑛 × 𝑡𝐶𝐹𝐿, where 𝑡𝐶𝐹𝐿 is the minimum timestep allowed by the CFL constraint. The default
value is 0.4.

clfmax Used for adaptive timestep control. Rayleigh ensures that the time-step size never exceeds cflmax×
𝑡CFL, where 𝑡CFL is the minimum timestep allowed by the CFL constraint. The default value is 0.6.

new_iteration If desired, a simulation’s iteration numbers may be reset upon restarting from a checkpoint.
Set this value to the new iteration number to use (must be greater than zero), and the old iteration
number contained in the checkpoint file will ignored. The default value is 0.
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5.1.5 IO Controls

This namelist provides various options to control Rayleigh’s input and output cadence and structure.

stdout_file If desired, set this variable to the name of a file to which Rayleigh’s text output is redirected. This
can be useful for monitoring run progress and time-step size on systems that otherwise don’t produce
the text output until a run has complete. The default value is ‘nofile,’ which indicates that Rayleigh
should not redirect stdout to a file.

stdout_flush_interval Number of lines to cache before writing to the stdout_file if used. This prevents
excessive disk access while a model is evolving. The default value if 50.

jobinfo_file Set this variable to the name of a file, generated during Rayleigh’s initialization, that contains
the values assigned to each namelist variable, along with compiler and Git hash information. The
default filename is ‘jobinfo.txt’

terminate_file The name of a file that, if found in the top-level simulation directory, indicates Rayleigh
should terminate execution. This can be useful when trying to exit a run cleanly before the scheduled
wall time runs out. The default filename is ‘terminate’.

terminate_check_interval Number of iterations between successive checks for the presence of the job ter-
mination file. The default value is 50.

statusline_interval Number of iterations between successive outputs to sdout indicating time step number
and size. The default value is 1, so that iteration number and time-step size are printed during every
time step.

outputs_per_row Determines the number of process columns that particpate in MPI-IO during checkpoint-
ing and diagnostic outputs. Acceptable values fall in the range [1,nprow], with a default value of 1.

integer_output_digits Number of digits to use for all integer-based filenames (e.g., G_Avgs/00000001).
The default value is 8.

integer_input_digits Number of digits for integer-based checkpoint names to be read during a restart. The
default value is 8.

decimal_places Number of digits to use after then decimal point for those portions of Rayleigh’s text output
that displayed in scientific notation. The default value is 3.

5.1.6 Output

This namelist is described in extensive detail in Rayleigh/post_processing/Diagnostic_Plotting.ipynb. Please
see that document for a discussion of these namelist variables and the general structure of Rayleigh’s output.

5.1.7 Boundary Conditions

This namelist provides those options necessary to determine the boundary conditions employed in a Rayleigh
model.

fix_tvar_top Logical flag indicating whether thermal variable (T,S) should be fixed on the upper boundary.
Default = .true.

fix_tvar_bottom Logical flag indicating whether thermal variable (T,S) should be fixed on the lower bound-
ary. Default = .true.
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fix_dtdr_top Logical flag indicating whether the radial derivative of thermal variable (T,S) should be fixed
on the upper boundary. Default = .false.

fix_dtdr_bottom Logical flag indicating whether the radial derivative of thermal variable (T,S) should be
fixed on the lower boundary. Default = .false.

T_top Value of thermal variable (T,S) at the upper boundary. Default = 0.

T_bottom Value of thermal variable (T,S) at the lower boundary. Default = 1.

dTdr_top Value of radial derivative of thermal variable (T,S) at the upper boundary. Default = 0.

dTdr_bottom Value of radial derivative of thermal variable (T,S) at the lower boundary. Default = 0.

adjust_dTdr_top Logical flag indicating that dTdr_top should be set based on the values of heating_integral
(or luminosity) and the value of dTdr_bottom. Default value is .false. When .true., this flag only has
an effect when fix_dtdr_top = .true. and heating_type > 0. When active, dTdr_top is set such that the
integrated flux passing through the upper boundary is equal to the sum of those due to internal heating
and any flux passing through the lower boundary due to fixed dTdr_bottom.

no_slip_top When .true., a no-slip condition on the horizontal velocity field is enforced at the upper bound-
ary. Default = .false.

no_slip_bottom When .true., a no-slip condition on the horizontal velocity field is enforced at the lower
boundary. Default = .false.

stress_free_top When .true., a stress-free condition on the horizontal velocity field is enforced at the upper
boundary. Default = .true.

stress_free_bottom When .true., a stress-free condition on the horizontal velocity field is enforced at the
lower boundary. Default = .true.

no_slip_boundaries When .true., both no_slip_top and no_slip_bottom are set to .false. Default = .false.

strict_L_Conservation In some cases, typically rotating models employing MHD or thick shells, angular
momentum can leak into/out of the domain even when using stree-free boundaries. When .true., this
flag replaces the upper boundary condition with an integral constraint on the ℓ = 1 toroidal streamfunc-
tion that enforces strict conservation of angular momentum. Note that the upper boundary is neither
stress-free nor no-slip in this case. Default = .false.

T_top_file Generic-input file containing a custom, fixed (T,S) upper boundary condition.

T_bottom_file Generic-input file containing a custom, fixed (T,S) lower boundary condition.

dTdr_top_file Generic-input file containing a custom, fixed (𝜕𝑇/𝜕𝑟, 𝜕𝑆/𝜕𝑟) upper boundary condition.

dTdr_bottom_file Generic-input file containing a custom, fixed (𝜕𝑇/𝜕𝑟, 𝜕𝑆/𝜕𝑟) lower boundary condi-
tion.

C_top_file Generic-input file containing a custom upper boundary condition for the poloidal flux function
C.

C_bottom_file Generic-input file containing a custom lower boundary condition for the poloidal flux func-
tion C.
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5.1.8 Initial Conditions

All variables necessary to initialize velocity, temperature, pressure, and magnetic field are supplied here.

init_type
Integer value indicating how nonmagnetic variables should be initialized.

• type -1: Restart from a checkpoint

• type 1: Hydro Boussinesq benchmark init (Christensen et al. 2001). The temperature field is
initialized with an ℓ = 4 , m=4 perturbation on top of a conductive profile. Velocity/pressure
are zero.

• type 6: Hydro anelastic benchmark init (Jones et al. 2011). The entropy field is initialized
with an ℓ = 19 , m=19 and ℓ = 1 , m=1 perturbation on top of a conductive profile.
Velocity/pressure are zero.

• type 7: A randomized temperature/entropy field is initialized. Velocity and pressure are set
to zero.

• type 8: Velocity, entropy/temperature, and pressure are initialized to zero, or if an associated
filename is provided, they are initialized using the generic input interface.

magnetic_init_type
Integer value indicating how magnetic field should be initialized.

• type -1: Initialize magnetic field from a checkpoint.

• type 1: Magnetic initialization for Christensen et al. (2001), case 1. The poloidal flux
function is initialized using an ℓ = 1,𝑚 = 0 mode. THe toroidal flux function is initialized
with an ℓ = 2,𝑚 = 0 mode.

• type 7: The poloidal and toroidal flux functions are initialized to randomized values.

• type 8: The poloidal and toroidal flux functions are intialized to zero, and then if a corre-
sponding generic input file is specified, their initial state is read from that file.

restart_iter Iteration number indicating the checkpoint to restart from when init_type and mag-
netic_init_type equal 1.

temp_amp Amplitude of randomized temperature/entropy perturbations to use with init_type = 7.

mag_amp Amplitude of randomized magnetic perturbations to use with magnetic_init_type = 7.

t_init_file Name of generic input file that, if init_type=8, will be used to initialize temperature/entropy.

p_init_file Name of generic input file that, if init_type=8, will be used to initialize pressure.

w_init_file Name of generic input file that, if init_type=8, will be used to initialize the poloidal stream
function W.

z_init_file Name of generic input file that, if init_type=8, will be used to initialize the toroidal stream func-
tion Z.

c_init_file Name of generic input file that, if init_type=8, will be used to initialize the poloidal stream func-
tion C.

a_init_file Name of generic input file that, if init_type=8, will be used to initialize the toroidal stream func-
tion A.
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rescale_velocity Logical variable indicating that the velocity field should be rescaled upon restart. Default
= .false.

velocity_scale Factor by which to rescale the velocity field upon restart.

rescale_pressure Logical variable indicating that the pressure field should be rescaled upon restart. Default
= .false.

pressure_scale Factor by which to rescale the pressure field upon restart.

rescale_tvar Logical variable indicating that the temperature/entropy field should be rescaled upon restart.
Default = .false.

tvar_scale Factor by which to rescale the temperature/entropy field upon restart.

rescale_bfield Logical variable indicating that the magnetic field should be rescaled upon restart. Default
= .false.

bfield_scale Factor by which to rescale the magnetic field upon restart.

5.1.9 Reference

This namelist provides options to control the properties of Rayleigh’s background state.

reference_type
Determines the fluid approximation and background state used by Rayleigh.

• type 1: Boussinesq + nondimensional

• type 2: Anelastic + polytropic background state (dimensional)

• type 3: Anelastic + polytropic background state (non-dimensional)

• type 4: Custom reference-state (read from file)

poly_n The polytropic index used to describe the background state for reference types 2 and 3.

poly_Nrho Number of density scaleheights spanning the interval 𝑟min ≤ 𝑟 ≤ 𝑟max for reference types 2
and 3.

poly_mass Mass interior to 𝑟min, used in defining the polytropic reference state for reference types 2 and 3.

poly_rho_i Specifies the value of density at the inner boundary 𝑟 = 𝑟min for the polytropic reference states
of reference types 2 and 3.

pressure_specific_heat Determines the value of the specific heat at constant pressure, 𝑐p for reference types
2 and 3.

heating_type
Integer value that determines the form of the internal heating function 𝑄(𝑟). The default value is 0, which indicates no internal heating is used. Allowable types are

• type 1: 𝑄(𝑟) ∝ 𝜌(𝑟)𝑇 (𝑟).

• type 4: 𝑄(𝑟) is a constant function of radius.

heating_integral Determines the heating normalization 𝐿, defined such that 𝐿 = 4𝜋
∫︀ 𝑟max

𝑟min
𝑄(𝑟)𝑟2𝑑𝑟.

luminosity Same as heating_integral. If both are specified, the value of heating_integral will be used.

angular_velocity Determines the frame rotation rate Ω for rotating models employing reference type 2.
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rayleigh_number Sets the value of the Rayleigh number Ra for reference type 1.

ekman_number Sets the value of the Ekman number Ek for reference types 1 and 3.

prandtl_number Sets the value of the Prandtl number Pr for reference types 1 and 3.

prandtl_number Sets the value of the magnetic Prandtl number Pm for reference types 1 and 3.

dissipation_number Sets the value of the dissipationg number Di for reference type 3.

modified_rayleigh_number Sets the value of the modified Rayleigh number 𝑅𝑎* for reference type 3.

gravity_power Specifies the value of n (real number) used to determine the radial variation of gravitational
acceleration g in reference type 1, where 𝑔 ∝

(︁
𝑟

𝑟max

)︁𝑛
.

ra_constants Indicates the desired value of specified constant coefficients when reading the value from
main_input instead of from a custom-refernce file. For use with override_constants or over-
ride_constant flags. Syntax is:

&Reference_Namelist
...
ra_constants( 2) = 1.0
ra_constants(10) = 14.0
...
/

with_custom_constants Comma separated list of integers indicating which constant coefficients should be
read from a custom-refernce file when with_custom_reference is true.

with_custom_functions Comma separated list of integers indicating which non-constant coefficients should
be read from a custom-refernce file when with_custom_reference is true.

with_custom_reference Logical flag that indicates some constant and non-constant coefficients should be
read from a custom-reference file and used to overwrite those values otherwise assigned for refer-
ence_Types 1–3. Default value is .false.

custom_reference_file Name of file from which to read custom-reference-state information when using
reference_type 4 or when augmenting reference types 1–3.

override_constants When true, ALL constant coefficients specified in the custom-reference file will be
ignored, and those specified in main_input will be used instead. Constant coefficients not specified in
main_input will be assigned a value of zero. Default value is .false.

override_constant Indicates that particular constant coefficients, rather than all, should be overridden using
main_input values when using reference_type 4. Multiple constant overrides can be specified, one per
line, with the syntax:

&Reference_Namelist
...
override_constant( 2) = T
override_constant(10) = T
...
/
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5.1.10 Transport

This namelist enables control of Rayleigh’s diffusivities.

{nu,kappa,eta}_type
Determines the radial profile of the associated diffusion coefficient.

• type 1 : no radial variation

• type 2 : diffusivity profile varies as 𝜌𝑛 for some real number n.

• type 3 : diffusivity profile is read from a custom-reference-state file

{nu,kappa,eta}_top
Specifies the value of the associated diffusion coefficient at the upper boundary. This is primarily used for dimensional models or those employing a custom nondimensionalization via Rayleigh’s custom-reference interface. For Rayleigh’s intrinsic nondimensional reference states, the following values are assumed:

• reference_type 1: 𝜈top = 1, 𝜅top = 1/Pr, 𝜂top = 1/Pm

• reference_type 3: 𝜈top = Ek, 𝜅top = Ek/Pr, 𝜂top = Ek/Pm

{nu,kappa,eta}_power Denotes the value of the exponent n in the 𝜌𝑛 variation associated with diffusion
type 2.

hyperdiffusion
Set this to variable to .true. to enable hyperdiffusion. The default value is .false. When active, diffusivities are multiplied by an additional factor such that:

• {𝜈, 𝜅, 𝜂} → {𝜈, 𝜅, 𝜂}
(︂

1 + 𝛼
(︁

ℓ−1
ℓmax−1

)︁𝛽
)︂

hyperdiffusion_alpha Determines the value of 𝛼 when hyper diffusion is active.

hyperdiffusion_beta Determines the value of 𝛽 when hyper diffusion is active.

5.2 Output Quantity Codes

5.2.1 Velocity Field

𝑣𝑟 1 v_r
𝑣𝜃 2 v_theta
𝑣𝜑 3 v_phi
𝑣′𝑟 4 vp_r
𝑣′𝜃 5 vp_theta
𝑣′𝜑 6 vp_phi
𝑣𝑟 7 vm_r
𝑣𝜃 8 vm_theta
𝑣𝜑 9 vm_phi
𝜕𝑣𝑟
𝜕𝑟 10 dv_r_dr
𝜕𝑣𝜃
𝜕𝑟 11 dv_theta_dr
𝜕𝑣𝜑
𝜕𝑟 12 dv_phi_dr

continues on next page
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Table 1 – continued from previous page
𝜕𝑣′𝑟
𝜕𝑟 13 dvp_r_dr
𝜕𝑣′𝜃
𝜕𝑟 14 dvp_theta_dr
𝜕𝑣′𝜑
𝜕𝑟 15 dvp_phi_dr
𝜕𝑣𝑟
𝜕𝑟 16 dvm_r_dr
𝜕𝑣𝜃
𝜕𝑟 17 dvm_theta_dr
𝜕𝑣𝜑
𝜕𝑟 18 dvm_phi_dr
𝜕𝑣𝑟
𝜕𝜃 19 dv_r_dt
𝜕𝑣𝜃
𝜕𝜃 20 dv_theta_dt
𝜕𝑣𝜑
𝜕𝜃 21 dv_phi_dt
𝜕𝑣′𝑟
𝜕𝜃 22 dvp_r_dt
𝜕𝑣′𝜃
𝜕𝜃 23 dvp_theta_dt
𝜕𝑣′𝜑
𝜕𝜃 24 dvp_phi_dt
𝜕𝑣𝑟
𝜕𝜃 25 dvm_r_dt
𝜕𝑣𝜃
𝜕𝜃 26 dvm_theta_dt
𝜕𝑣𝜑
𝜕𝜃 27 dvm_phi_dt
𝜕𝑣𝑟
𝜕𝜑 28 dv_r_dp
𝜕𝑣𝜃
𝜕𝜑 29 dv_theta_dp
𝜕𝑣𝜑
𝜕𝜑 30 dv_phi_dp
𝜕𝑣′𝑟
𝜕𝜑 31 dvp_r_dp
𝜕𝑣′𝜃
𝜕𝜑 32 dvp_theta_dp
𝜕𝑣′𝜑
𝜕𝜑 33 dvp_phi_dp
𝜕𝑣𝑟
𝜕𝜑 34 dvm_r_dp
𝜕𝑣𝜃
𝜕𝜑 35 dvm_theta_dp
𝜕𝑣𝜑
𝜕𝜑 36 dvm_phi_dp
1
𝑟
𝜕𝑣𝑟
𝜕𝜃 37 dv_r_dtr

1
𝑟
𝜕𝑣𝜃
𝜕𝜃 38 dv_theta_dtr

1
𝑟
𝜕𝑣𝜑
𝜕𝜃 39 dv_phi_dtr

1
𝑟
𝜕𝑣′𝑟
𝜕𝜃 40 dvp_r_dtr

1
𝑟
𝜕𝑣′𝑟
𝜕𝜃 41 dvp_theta_dtr

1
𝑟
𝜕𝑣′𝑟
𝜕𝜃 42 dvp_phi_dtr

1
𝑟
𝜕𝑣𝑟
𝜕𝜃 43 dvm_r_dtr

1
𝑟
𝜕𝑣𝜃
𝜕𝜃 44 dvm_theta_dtr

1
𝑟
𝜕𝑣𝜑
𝜕𝜃 45 dvm_phi_dtr
1

𝑟sin𝜃
𝜕𝑣𝑟
𝜕𝜑 46 dv_r_dprs

1
𝑟sin𝜃

𝜕𝑣𝜃
𝜕𝜑 47 dv_theta_dprs

1
𝑟sin𝜃

𝜕𝑣𝜑
𝜕𝜑 48 dv_phi_dprs

1
𝑟sin𝜃

𝜕𝑣′𝑟
𝜕𝜑 49 dvp_r_dprs

1
𝑟sin𝜃

𝜕𝑣′𝜃
𝜕𝜑 50 dvp_theta_dprs

continues on next page
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Table 1 – continued from previous page
1

𝑟sin𝜃

𝜕𝑣′𝜑
𝜕𝜑 51 dvp_phi_dprs

1
𝑟sin𝜃

𝜕𝑣𝑟
𝜕𝜑 52 dvm_r_dprs

1
𝑟sin𝜃

𝜕𝑣𝜃
𝜕𝜑 53 dvm_theta_dprs

1
𝑟sin𝜃

𝜕𝑣𝜑
𝜕𝜑 54 dvm_phi_dprs

𝜕2𝑣𝑟
𝜕𝑟2

55 dv_r_d2r
𝜕2𝑣𝜃
𝜕𝑟2

56 dv_theta_d2r
𝜕2𝑣𝜑
𝜕𝑟2

57 dv_phi_d2r
𝜕2𝑣′𝑟
𝜕𝑟2

58 dvp_r_d2r
𝜕2𝑣′𝜃
𝜕𝑟2

59 dvp_theta_d2r
𝜕2𝑣′𝜑
𝜕𝑟2

60 dvp_phi_d2r
𝜕2𝑣𝑟
𝜕𝑟2

61 dvm_r_d2r
𝜕2𝑣𝜃
𝜕𝑟2

62 dvm_theta_d2r
𝜕2𝑣𝜑
𝜕𝑟2

63 dvm_phi_d2r
𝜕2𝑣𝑟
𝜕𝜃2

64 dv_r_d2t
𝜕2𝑣𝜃
𝜕𝜃2

65 dv_theta_d2t
𝜕2𝑣𝜑
𝜕𝜃2

66 dv_phi_d2t
𝜕2𝑣′𝑟
𝜕𝜃2

67 dvp_r_d2t
𝜕2𝑣′𝜃
𝜕𝜃2

68 dvp_theta_d2t
𝜕2𝑣′𝜑
𝜕𝜃2

69 dvp_phi_d2t
𝜕2𝑣𝑟
𝜕𝜃2

70 dvm_r_d2t
𝜕2𝑣𝜃
𝜕𝜃2

71 dvm_theta_d2t
𝜕2𝑣𝜑
𝜕𝜃2

72 dvm_phi_d2t
𝜕2𝑣𝑟
𝜕𝜑2 73 dv_r_d2p
𝜕2𝑣𝜃
𝜕𝜑2 74 dv_theta_d2p
𝜕2𝑣𝜑
𝜕𝜑2 75 dv_phi_d2p
𝜕2𝑣′𝑟
𝜕𝜑2 76 dvp_r_d2p
𝜕2𝑣′𝜃
𝜕𝜑2 77 dvp_theta_d2p
𝜕2𝑣′𝜑
𝜕𝜑2 78 dvp_phi_d2p
𝜕2𝑣𝑟
𝜕𝜑2 79 dvm_r_d2p
𝜕2𝑣𝜃
𝜕𝜑2 80 dvm_theta_d2p
𝜕2𝑣𝜑
𝜕𝜑2 81 dvm_phi_d2p
𝜕2𝑣𝑟
𝜕𝑟𝜕𝜃 82 dv_r_d2rt
𝜕2𝑣𝜃
𝜕𝑟𝜕𝜃 83 dv_theta_d2rt
𝜕2𝑣𝜑
𝜕𝑟𝜕𝜃 84 dv_phi_d2rt
𝜕2𝑣′𝑟
𝜕𝑟𝜕𝜃 85 dvp_r_d2rt
𝜕2𝑣′𝜃
𝜕𝑟𝜕𝜃 86 dvp_theta_d2rt
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𝜕2𝑣′𝜑
𝜕𝑟𝜕𝜃 87 dvp_phi_d2rt
𝜕2𝑣𝑟
𝜕𝑟𝜕𝜃 88 dvm_r_d2rt
𝜕2𝑣𝜃
𝜕𝑟𝜕𝜃 89 dvm_theta_d2rt
𝜕2𝑣𝜑
𝜕𝑟𝜕𝜃 90 dvm_phi_d2rt
𝜕2𝑣𝑟
𝜕𝑟𝜕𝜑 91 dv_r_d2rp
𝜕2𝑣𝜃
𝜕𝑟𝜕𝜑 92 dv_theta_d2rp
𝜕2𝑣𝜑
𝜕𝑟𝜕𝜑 93 dv_phi_d2rp
𝜕2𝑣′𝑟
𝜕𝑟𝜕𝜑 94 dvp_r_d2rp
𝜕2𝑣′𝜃
𝜕𝑟𝜕𝜑 95 dvp_theta_d2rp
𝜕2𝑣′𝜑
𝜕𝑟𝜕𝜑 96 dvp_phi_d2rp
𝜕2𝑣𝑟
𝜕𝑟𝜕𝜑 97 dvm_r_d2rp
𝜕2𝑣𝜃
𝜕𝑟𝜕𝜑 98 dvm_theta_d2rp
𝜕2𝑣𝜑
𝜕𝑟𝜕𝜑 99 dvm_phi_d2rp
𝜕2𝑣𝑟
𝜕𝜃𝜕𝜑 100 dv_r_d2tp
𝜕2𝑣𝜃
𝜕𝜃𝜕𝜑 101 dv_theta_d2tp
𝜕2𝑣𝜑
𝜕𝜃𝜕𝜑 102 dv_phi_d2tp
𝜕2𝑣′𝑟
𝜕𝜃𝜕𝜑 103 dvp_r_d2tp
𝜕2𝑣′𝜃
𝜕𝜃𝜕𝜑 104 dvp_theta_d2tp
𝜕2𝑣′𝜑
𝜕𝜃𝜕𝜑 105 dvp_phi_d2tp
𝜕2𝑣𝑟
𝜕𝜃𝜕𝜑 106 dvm_r_d2tp
𝜕2𝑣𝜃
𝜕𝜃𝜕𝜑 107 dvm_theta_d2tp
𝜕2𝑣𝜑
𝜕𝜃𝜕𝜑 108 dvm_phi_d2tp

5.2.2 Mass Flux

f1𝑣𝑟 201 rhov_r
f1𝑣𝜃 202 rhov_theta
f1𝑣𝜑 203 rhov_phi
f1𝑣

′
𝑟 204 rhovp_r

f1𝑣
′
𝜃 205 rhovp_theta

f1𝑣
′
𝜑 206 rhovp_phi

f1𝑣𝑟 207 rhovm_r
f1𝑣𝜃 208 rhovm_theta
f1𝑣𝜑 209 rhovm_phi
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5.2.3 Vorticity

𝜔𝑟 301 vort_r
𝜔𝜃 302 vort_theta
𝜔𝜑 303 vort_phi
𝜔′
𝑟 304 vortp_r

𝜔′
𝜃 305 vortp_theta

𝜔′
𝜑 306 vortp_phi

𝜔𝑟 307 vortm_r
𝜔𝜃 308 vortm_theta
𝜔𝜑 309 vortm_phi
𝜔 · 𝜔 310 enstrophy
𝜔′ · 𝜔 311 enstrophy_pm
𝜔 · 𝜔 312 enstrophy_mm
𝜔′ · 𝜔′ 313 enstrophy_pp
𝜔2
𝑟 314 vort_r_sq

𝜔2
𝜃 315 vort_theta_sq

𝜔2
𝜑 316 vort_phi_sq

𝜔′
𝑟
2 317 vortp_r_sq

𝜔′
𝜃
2 318 vortp_theta_sq

𝜔′
𝜑
2 319 vortp_phi_sq

𝜔𝑟
2 320 vortm_r_sq

𝜔𝜃
2 321 vortm_theta_sq

𝜔𝜑
2 322 vortm_phi_sq

𝑍 323 zstream
𝑣𝑟𝜔𝑟 324 kin_helicity_r
𝑣𝜃𝜔𝜃 325 kin_helicity_theta
𝑣𝜑𝜔𝜑 326 kin_helicity_phi
𝑣′𝑟𝜔

′
𝑟 327 kin_helicity_pp_r

𝑣′𝜃𝜔
′
𝜃 328 kin_helicity_pp_theta

𝑣′𝜑𝜔
′
𝜑 329 kin_helicity_pp_phi

𝑣𝑟𝜔𝑟 330 kin_helicity_mm_r
𝑣𝜃𝜔𝜃 331 kin_helicity_mm_theta
𝑣𝜑𝜔𝜑 332 kin_helicity_mm_phi
𝑣𝑟𝜔

′
𝑟 333 kin_helicity_mp_r

𝑣𝜃𝜔
′
𝜃 334 kin_helicity_mp_theta

𝑣𝜑𝜔
′
𝜑 335 kin_helicity_mp_phi

𝑣′𝑟𝜔𝑟 336 kin_helicity_pm_r
𝑣′𝜃𝜔𝜃 337 kin_helicity_pm_theta
𝑣′𝜑𝜔𝜑 338 kin_helicity_pm_phi
𝑣 · 𝜔 339 kin_helicity
𝑣′ · 𝜔′ 340 kin_helicity_pp
𝑣 · 𝜔 341 kin_helicity_mm
𝑣 · 𝜔′ 342 kin_helicity_mp
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𝑣′ · 𝜔 343 kin_helicity_pm

5.2.4 Kinetic Energy

1
2 f1𝑣

2 401 kinetic_energy
1
2 f1𝑣

2
𝑟 402 radial_ke

1
2 f1𝑣

2
𝜃 403 theta_ke

1
2 f1𝑣

2
𝜑 404 phi_ke

1
2 f1𝑣

2 405 mkinetic_energy
1
2 f1𝑣𝑟

2 406 radial_mke
1
2 f1𝑣𝜃

2 407 theta_mke
1
2 f1𝑣𝜑

2 408 phi_mke
1
2 f1𝑣

′2 409 pkinetic_energy
1
2 f1𝑣

′
𝑟
2 410 radial_pke

1
2 f1𝑣

′
𝜃
2 411 theta_pke

1
2 f1𝑣

′
𝜑
2 412 phi_pke

𝑣2 413 vsq
𝑣𝑟

2 414 radial_vsq
𝑣𝜃

2 415 theta_vsq
𝑣𝜑

2 416 phi_vsq
𝑣2 417 mvsq
𝑣𝑟

2 418 radial_mvsq
𝑣𝜃

2 419 theta_mvsq
𝑣𝜑

2 420 phi_mvsq
𝑣′2 421 pvsq
𝑣′𝑟

2 422 radial_pvsq
𝑣′𝜃

2 423 theta_pvsq
𝑣′𝜑

2 424 phi_pvsq

5.2.5 Thermal Variables

Θ 501 entropy
𝑃 502 pressure
Θ′ 503 entropy_p
𝑃 ′ 504 pressure_p
Θ 505 entropy_m
𝑃 506 pressure_m
𝜕Θ
𝜕𝑟 507 entropy_dr
𝜕𝑃
𝜕𝑟 508 pressure_dr
𝜕Θ′

𝜕𝑟 509 entropy_p_dr
𝜕𝑃 ′

𝜕𝑟 510 pressure_p_dr
continues on next page
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𝜕Θ
𝜕𝑟 511 entropy_m_dr
𝜕𝑃
𝜕𝑟 512 pressure_m_dr
𝜕Θ
𝜕𝜃 513 entropy_dtheta
𝜕𝑃
𝜕𝜃 514 pressure_dtheta
𝜕Θ′

𝜕𝜃 515 entropy_p_dtheta
𝜕𝑃 ′

𝜕𝜃 516 pressure_p_dtheta
𝜕Θ
𝜕𝜃 517 entropy_m_dtheta
𝜕𝑃
𝜕𝜃 518 pressure_m_dtheta
𝜕Θ
𝜕𝜑 519 entropy_dphi
𝜕𝑃
𝜕𝜑 520 pressure_dphi
𝜕Θ′

𝜕𝜑 521 entropy_p_dphi
𝜕𝑃 ′

𝜕𝜑 522 pressure_p_dphi
𝜕Θ
𝜕𝜑 523 entropy_m_dphi
𝜕𝑃
𝜕𝜑 524 pressure_m_dphi
1
𝑟
𝜕Θ
𝜕𝜃 525 entropy_dtr

1
𝑟
𝜕𝑃
𝜕𝜃 526 pressure_dtr

1
𝑟
𝜕Θ′

𝜕𝜃 527 entropy_p_dtr
1
𝑟
𝜕𝑃 ′

𝜕𝜃 528 pressure_p_dtr
1
𝑟
𝜕Θ
𝜕𝜃 529 entropy_m_dtr

1
𝑟
𝜕𝑃
𝜕𝜃 530 pressure_m_dtr
1

𝑟sin𝜃
𝜕Θ
𝜕𝜑 531 entropy_dprs

1
𝑟sin𝜃

𝜕𝑃
𝜕𝜑 532 pressure_dprs

1
𝑟sin𝜃

𝜕Θ′

𝜕𝜑 533 entropy_p_dprs
1

𝑟sin𝜃
𝜕𝑃 ′

𝜕𝜑 534 pressure_p_dprs
1

𝑟sin𝜃
𝜕Θ
𝜕𝜑 535 entropy_m_dprs

1
𝑟sin𝜃

𝜕𝑃
𝜕𝜑 536 pressure_m_dprs

𝜕2Θ
𝜕𝑟2

537 entropy_d2r
𝜕2𝑃
𝜕𝑟2

538 pressure_d2r
𝜕2Θ′

𝜕𝑟2
539 entropy_p_d2r

𝜕2𝑃 ′

𝜕𝑟2
540 pressure_p_d2r

𝜕2Θ
𝜕𝑟2

541 entropy_m_d2r
𝜕2𝑃
𝜕𝑟2

542 pressure_m_d2r
𝜕2Θ
𝜕𝜃2

543 entropy_d2t
𝜕2𝑃
𝜕𝜃2

544 pressure_d2t
𝜕2Θ′

𝜕𝜃2
545 entropy_p_d2t

𝜕2𝑃 ′

𝜕𝜃2
546 pressure_p_d2t

𝜕2Θ
𝜕𝜃2

547 entropy_m_d2t
𝜕2𝑃
𝜕𝜃2

548 pressure_m_d2t
𝜕2Θ
𝜕𝜑2 549 entropy_d2p
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𝜕2𝑃
𝜕𝜑2 550 pressure_d2p
𝜕2Θ′

𝜕𝜑2 551 entropy_p_d2p
𝜕2𝑃 ′

𝜕𝜑2 552 pressure_p_d2p
𝜕2Θ
𝜕𝜑2 553 entropy_m_d2p
𝜕2𝑃
𝜕𝜑2 554 pressure_m_d2p
𝜕2Θ
𝜕𝑟𝜕𝜃 555 entropy_d2rt
𝜕2𝑃
𝜕𝑟𝜕𝜃 556 pressure_d2rt
𝜕2Θ′

𝜕𝑟𝜕𝜃 557 entropy_p_d2rt
𝜕2𝑃 ′

𝜕𝑟𝜕𝜃 558 pressure_p_d2rt
𝜕2Θ
𝜕𝑟𝜕𝜃 559 entropy_m_d2rt
𝜕2𝑃
𝜕𝑟𝜕𝜃 560 pressure_m_d2rt
𝜕2Θ
𝜕𝑟𝜕𝜑 561 entropy_d2rp
𝜕2𝑃
𝜕𝑟𝜕𝜑 562 pressure_d2rp
𝜕2Θ′

𝜕𝑟𝜕𝜑 563 entropy_p_d2rp
𝜕2𝑃 ′

𝜕𝑟𝜕𝜑 564 pressure_p_d2rp
𝜕2Θ
𝜕𝑟𝜕𝜑 565 entropy_m_d2rp
𝜕2𝑃
𝜕𝑟𝜕𝜑 566 pressure_m_d2rp
𝜕2Θ
𝜕𝜃𝜕𝜑 567 entropy_d2tp
𝜕2𝑃
𝜕𝜃𝜕𝜑 568 pressure_d2tp
𝜕2Θ′

𝜕𝜃𝜕𝜑 569 entropy_p_d2tp
𝜕2𝑃 ′

𝜕𝜃𝜕𝜑 570 pressure_p_d2tp
𝜕2Θ
𝜕𝜃𝜕𝜑 571 entropy_m_d2tp
𝜕2𝑃
𝜕𝜃𝜕𝜑 572 pressure_m_d2tp
𝜕
𝜕𝑟

(︁
𝑃
𝜌

)︁
573 rhopressure_dr

𝜕
𝜕𝑟

(︁
𝑃 ′

𝜌

)︁
574 rhopressurep_dr

𝜕
𝜕𝑟

(︁
𝑃
𝜌

)︁
575 rhopressurem_dr
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5.2.6 Thermal Energy

f1f4Θ 701 thermal_energy_full
f1f4Θ 702 thermal_energy_p
f1f4Θ 703 thermal_energy_m
𝑐𝑃𝜌𝑇 704 enthalpy_full
𝑐𝑃𝜌𝑇

′ 705 enthalpy_p
𝑐𝑃𝜌𝑇 706 enthalpy_m
(f1f4Θ)2 707 thermal_energy_sq
(f1f4Θ)2 708 thermal_energyp_sq(︀
f1f4Θ

)︀2 709 thermal_energym_sq
(𝑐𝑃𝜌𝑇 )2 710 enthalpy_sq
(𝑐𝑃𝜌𝑇

′)2 711 enthalpyp_sq(︀
𝑐𝑃𝜌𝑇

)︀2 712 enthalpym_sq

5.2.7 Magnetic Field

𝐵𝑟 801 b_r
𝐵𝜃 802 b_theta
𝐵𝜑 803 b_phi
𝐵′

𝑟 804 bp_r
𝐵′

𝜃 805 bp_theta
𝐵′

𝜑 806 bp_phi
𝐵𝑟 807 bm_r
𝐵𝜃 808 bm_theta
𝐵𝜑 809 bm_phi
𝜕𝐵𝑟
𝜕𝑟 810 db_r_dr
𝜕𝐵𝜃
𝜕𝑟 811 db_theta_dr
𝜕𝐵𝜑

𝜕𝑟 812 db_phi_dr
𝜕𝐵′

𝑟
𝜕𝑟 813 dbp_r_dr
𝜕𝐵′

𝜃
𝜕𝑟 814 dbp_theta_dr
𝜕𝐵′

𝜑

𝜕𝑟 815 dbp_phi_dr
𝜕𝐵𝑟
𝜕𝑟 816 dbm_r_dr
𝜕𝐵𝜃
𝜕𝑟 817 dbm_theta_dr
𝜕𝐵𝜑

𝜕𝑟 818 dbm_phi_dr
𝜕𝐵𝑟
𝜕𝜃 819 db_r_dt
𝜕𝐵𝜃
𝜕𝜃 820 db_theta_dt
𝜕𝐵𝜑

𝜕𝜃 821 db_phi_dt
𝜕𝐵′

𝑟
𝜕𝜃 822 dbp_r_dt
𝜕𝐵′

𝜃
𝜕𝜃 823 dbp_theta_dt
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𝜕𝐵′

𝜑

𝜕𝜃 824 dbp_phi_dt
𝜕𝐵𝑟
𝜕𝜃 825 dbm_r_dt
𝜕𝐵𝜃
𝜕𝜃 826 dbm_theta_dt
𝜕𝐵𝜑

𝜕𝜃 827 dbm_phi_dt
𝜕𝐵𝑟
𝜕𝜑 828 db_r_dp
𝜕𝐵𝜃
𝜕𝜑 829 db_theta_dp
𝜕𝐵𝜑

𝜕𝜑 830 db_phi_dp
𝜕𝐵′

𝑟
𝜕𝜑 831 dbp_r_dp
𝜕𝐵′

𝜃
𝜕𝜑 832 dbp_theta_dp
𝜕𝐵′

𝜑

𝜕𝜑 833 dbp_phi_dp
𝜕𝐵𝑟
𝜕𝜑 834 dbm_r_dp
𝜕𝐵𝜃
𝜕𝜑 835 dbm_theta_dp
𝜕𝐵𝜑

𝜕𝜑 836 dbm_phi_dp
1
𝑟
𝜕𝐵𝑟
𝜕𝜃 837 db_r_dtr

1
𝑟
𝜕𝐵𝜃
𝜕𝜃 838 db_theta_dtr

1
𝑟
𝜕𝐵𝜑

𝜕𝜃 839 db_phi_dtr
1
𝑟
𝜕𝐵′

𝑟
𝜕𝜃 840 dbp_r_dtr

1
𝑟
𝜕𝐵′

𝑟
𝜕𝜃 841 dbp_theta_dtr

1
𝑟
𝜕𝐵′

𝑟
𝜕𝜃 842 dbp_phi_dtr

1
𝑟
𝜕𝐵𝑟
𝜕𝜃 843 dbm_r_dtr

1
𝑟
𝜕𝐵𝜃
𝜕𝜃 844 dbm_theta_dtr

1
𝑟
𝜕𝐵𝜑

𝜕𝜃 845 dbm_phi_dtr
1

𝑟sin𝜃
𝜕𝐵𝑟
𝜕𝜑 846 db_r_dprs

1
𝑟sin𝜃

𝜕𝐵𝜃
𝜕𝜑 847 db_theta_dprs

1
𝑟sin𝜃

𝜕𝐵𝜑

𝜕𝜑 848 db_phi_dprs
1

𝑟sin𝜃
𝜕𝐵′

𝑟
𝜕𝜑 849 dbp_r_dprs

1
𝑟sin𝜃

𝜕𝐵′
𝜃

𝜕𝜑 850 dbp_theta_dprs
1

𝑟sin𝜃

𝜕𝐵′
𝜑

𝜕𝜑 851 dbp_phi_dprs
1

𝑟sin𝜃
𝜕𝐵𝑟
𝜕𝜑 852 dbm_r_dprs

1
𝑟sin𝜃

𝜕𝐵𝜃
𝜕𝜑 853 dbm_theta_dprs

1
𝑟sin𝜃

𝜕𝐵𝜑

𝜕𝜑 854 dbm_phi_dprs
𝜕2𝐵𝑟
𝜕𝑟2

855 db_r_d2r
𝜕2𝐵𝜃
𝜕𝑟2

856 db_theta_d2r
𝜕2𝐵𝜑

𝜕𝑟2
857 db_phi_d2r

𝜕2𝐵′
𝑟

𝜕𝑟2
858 dbp_r_d2r

𝜕2𝐵′
𝜃

𝜕𝑟2
859 dbp_theta_d2r
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𝜕2𝐵′

𝜑

𝜕𝑟2
860 dbp_phi_d2r

𝜕2𝐵𝑟
𝜕𝑟2

861 dbm_r_d2r
𝜕2𝐵𝜃
𝜕𝑟2

862 dbm_theta_d2r
𝜕2𝐵𝜑

𝜕𝑟2
863 dbm_phi_d2r

𝜕2𝐵𝑟
𝜕𝜃2

864 db_r_d2t
𝜕2𝐵𝜃
𝜕𝜃2

865 db_theta_d2t
𝜕2𝐵𝜑

𝜕𝜃2
866 db_phi_d2t

𝜕2𝐵′
𝑟

𝜕𝜃2
867 dbp_r_d2t

𝜕2𝐵′
𝜃

𝜕𝜃2
868 dbp_theta_d2t

𝜕2𝐵′
𝜑

𝜕𝜃2
869 dbp_phi_d2t

𝜕2𝐵𝑟
𝜕𝜃2

870 dbm_r_d2t
𝜕2𝐵𝜃
𝜕𝜃2

871 dbm_theta_d2t
𝜕2𝐵𝜑

𝜕𝜃2
872 dbm_phi_d2t

𝜕2𝐵𝑟
𝜕𝜑2 873 db_r_d2p
𝜕2𝐵𝜃
𝜕𝜑2 874 db_theta_d2p
𝜕2𝐵𝜑

𝜕𝜑2 875 db_phi_d2p
𝜕2𝐵′

𝑟
𝜕𝜑2 876 dbp_r_d2p
𝜕2𝐵′

𝜃
𝜕𝜑2 877 dbp_theta_d2p
𝜕2𝐵′

𝜑

𝜕𝜑2 878 dbp_phi_d2p
𝜕2𝐵𝑟
𝜕𝜑2 879 dbm_r_d2p
𝜕2𝐵𝜃
𝜕𝜑2 880 dbm_theta_d2p
𝜕2𝐵𝜑

𝜕𝜑2 881 dbm_phi_d2p
𝜕2𝐵𝑟
𝜕𝑟𝜕𝜃 882 db_r_d2rt
𝜕2𝐵𝜃
𝜕𝑟𝜕𝜃 883 db_theta_d2rt
𝜕2𝐵𝜑

𝜕𝑟𝜕𝜃 884 db_phi_d2rt
𝜕2𝐵′

𝑟
𝜕𝑟𝜕𝜃 885 dbp_r_d2rt
𝜕2𝐵′

𝜃
𝜕𝑟𝜕𝜃 886 dbp_theta_d2rt
𝜕2𝐵′

𝜑

𝜕𝑟𝜕𝜃 887 dbp_phi_d2rt
𝜕2𝐵𝑟
𝜕𝑟𝜕𝜃 888 dbm_r_d2rt
𝜕2𝐵𝜃
𝜕𝑟𝜕𝜃 889 dbm_theta_d2rt
𝜕2𝐵𝜑

𝜕𝑟𝜕𝜃 890 dbm_phi_d2rt
𝜕2𝐵𝑟
𝜕𝑟𝜕𝜑 891 db_r_d2rp
𝜕2𝐵𝜃
𝜕𝑟𝜕𝜑 892 db_theta_d2rp
𝜕2𝐵𝜑

𝜕𝑟𝜕𝜑 893 db_phi_d2rp
𝜕2𝐵′

𝑟
𝜕𝑟𝜕𝜑 894 dbp_r_d2rp
𝜕2𝐵′

𝜃
𝜕𝑟𝜕𝜑 895 dbp_theta_d2rp
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𝜕2𝐵′

𝜑

𝜕𝑟𝜕𝜑 896 dbp_phi_d2rp
𝜕2𝐵𝑟
𝜕𝑟𝜕𝜑 897 dbm_r_d2rp
𝜕2𝐵𝜃
𝜕𝑟𝜕𝜑 898 dbm_theta_d2rp
𝜕2𝐵𝜑

𝜕𝑟𝜕𝜑 899 dbm_phi_d2rp
𝜕2𝐵𝑟
𝜕𝜃𝜕𝜑 900 db_r_d2tp
𝜕2𝐵𝜃
𝜕𝜃𝜕𝜑 901 db_theta_d2tp
𝜕2𝐵𝜑

𝜕𝜃𝜕𝜑 902 db_phi_d2tp
𝜕2𝐵′

𝑟
𝜕𝜃𝜕𝜑 903 dbp_r_d2tp
𝜕2𝐵′

𝜃
𝜕𝜃𝜕𝜑 904 dbp_theta_d2tp
𝜕2𝐵′

𝜑

𝜕𝜃𝜕𝜑 905 dbp_phi_d2tp
𝜕2𝐵𝑟
𝜕𝜃𝜕𝜑 906 dbm_r_d2tp
𝜕2𝐵𝜃
𝜕𝜃𝜕𝜑 907 dbm_theta_d2tp
𝜕2𝐵𝜑

𝜕𝜃𝜕𝜑 908 dbm_phi_d2tp

5.2.8 Current Density

𝒥𝑟 1001 j_r
𝒥 ′
𝑟 1002 jp_r

𝒥 𝑟 1003 jm_r
𝒥𝜃 1004 j_theta
𝒥 ′
𝜃 1005 jp_theta

𝒥 𝜃 1006 jm_theta
𝒥𝜑 1007 j_phi
𝒥 ′
𝜑 1008 jp_phi

𝒥 𝜑 1009 jm_phi
𝒥 ·𝒥 1010 j_sq
𝒥 ′ ·𝒥 ′ 1011 jp_sq
𝒥 ·𝒥 1012 jm_sq
𝒥 ·𝒥 ′ 1013 jpm_sq
(𝒥𝑟)

2 1014 j_r_sq
(𝒥 ′

𝑟)2 1015 jp_r_sq(︀
𝒥 𝑟

)︀2 1016 jm_r_sq
(𝒥𝜃)

2 1017 j_theta_sq
(𝒥 ′

𝜃)2 1018 jp_theta_sq(︀
𝒥 𝜃

)︀2 1019 jm_theta_sq
(𝒥𝜑)2 1020 j_phi_sq(︁
𝒥 ′
𝜑

)︁2
1021 jp_phi_sq(︀

𝒥 𝜑

)︀2 1022 jm_phi_sq
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5.2.9 Magnetic Energy

1
2𝑐4𝐵

2 1101 magnetic_energy
1
2𝑐4𝐵

2
𝑟 1102 radial_me

1
2𝑐4𝐵

2
𝜃 1103 theta_me

1
2𝑐4𝐵

2
𝜑 1104 phi_me

1
2𝑐4𝐵

2 1105 mmagnetic_energy
1
2𝑐4𝐵𝑟

2 1106 radial_mme
1
2𝑐4𝐵𝜃

2 1107 theta_mme
1
2𝑐4𝐵𝜑

2 1108 phi_mme
1
2𝑐4𝐵

′2 1109 pmagnetic_energy
1
2𝑐4𝐵

′
𝑟
2 1110 radial_pme

1
2𝑐4𝐵

′
𝜃
2 1111 theta_pme

1
2𝑐4𝐵

′
𝜑
2 1112 phi_pme

5.2.10 Momentum Equation

f1 [𝑣 ·∇𝑣]𝑟 1201 v_grad_v_r
f1 [𝑣 ·∇𝑣]𝜃 1202 v_grad_v_theta
f1 [𝑣 ·∇𝑣]𝜑 1203 v_grad_v_phi
f1 [𝑣′ ·∇𝑣]𝑟 1204 vp_grad_vm_r
f1 [𝑣′ ·∇𝑣]𝜃 1205 vp_grad_vm_theta
f1 [𝑣′ ·∇𝑣]𝜑 1206 vp_grad_vm_phi
f1 [𝑣 ·∇𝑣′]𝑟 1207 vm_grad_vp_r
f1 [𝑣 ·∇𝑣′]𝜃 1208 vm_grad_vp_theta
f1 [𝑣 ·∇𝑣′]𝜑 1209 vm_grad_vp_phi
f1 [𝑣′ ·∇𝑣′]𝑟 1210 vp_grad_vp_r
f1 [𝑣′ ·∇𝑣′]𝜃 1211 vp_grad_vp_theta
f1 [𝑣′ ·∇𝑣′]𝜑 1212 vp_grad_vp_phi
f1 [𝑣 ·∇𝑣]𝑟 1213 vm_grad_vm_r
f1 [𝑣 ·∇𝑣]𝜃 1214 vm_grad_vm_theta
f1 [𝑣 ·∇𝑣]𝜑 1215 vm_grad_vm_phi
𝑐2f2Θ 1216 buoyancy_force
𝑐2f2Θ

′ 1217 buoyancy_pforce
𝑐2f2Θ 1218 buoyancy_mforce
−𝑐1f1 [𝑧 × 𝑣]𝑟 1219 Coriolis_Force_r
−𝑐1f1 [𝑧 × 𝑣]𝜃 1220 Coriolis_Force_theta
−𝑐1f1 [𝑧 × 𝑣]𝜑 1221 Coriolis_Force_phi
−𝑐1f1 [𝑧 × 𝑣′]𝑟 1222 Coriolis_pForce_r
−𝑐1f1 [𝑧 × 𝑣′]𝜃 1223 Coriolis_pForce_theta
−𝑐1f1 [𝑧 × 𝑣′]𝜑 1224 Coriolis_pForce_phi
−𝑐1f1 [𝑧 × 𝑣]𝑟 1225 Coriolis_mForce_r
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−𝑐1f1 [𝑧 × 𝑣]𝜃 1226 Coriolis_mForce_theta
−𝑐1f1 [𝑧 × 𝑣]𝜑 1227 Coriolis_mForce_phi
𝑐5 [∇ ·𝒟]𝑟 1228 viscous_Force_r
𝑐5 [∇ ·𝒟]𝜃 1229 viscous_Force_theta
𝑐5 [∇ ·𝒟]𝜑 1230 viscous_Force_phi
𝑐5 [∇ ·𝒟′]𝑟 1231 viscous_pForce_r
𝑐5 [∇ ·𝒟′]𝜃 1232 viscous_pForce_theta
𝑐5 [∇ ·𝒟′]𝜑 1233 viscous_pForce_phi
𝑐5

[︀
∇ ·𝒟

]︀
𝑟

1234 viscous_mForce_r
𝑐5

[︀
∇ ·𝒟

]︀
𝜃

1235 viscous_mForce_theta
𝑐5

[︀
∇ ·𝒟

]︀
𝜑

1236 viscous_mForce_phi

−𝑐3f1
𝜕
𝜕𝑟

(︁
𝑃
f1

)︁
1237 pressure_Force_r

−𝑐3
1
𝑟
𝜕𝑃
𝜕𝜃 1238 pressure_Force_theta

−𝑐3
1

𝑟sin𝜃
𝜕𝑃
𝜕𝜑 1239 pressure_Force_phi

−𝑐3f1
𝜕
𝜕𝑟

(︁
𝑃 ′

f1

)︁
1240 pressure_pForce_r

−𝑐3
1
𝑟
𝜕𝑃 ′

𝜕𝜃 1241 pressure_pForce_theta
−𝑐3

1
𝑟sin𝜃

𝜕𝑃 ′

𝜕𝜑 1242 pressure_pForce_phi

−𝑐3f1
𝜕
𝜕𝑟

(︁
𝑃
f1

)︁
1243 pressure_mForce_r

−𝑐3
1
𝑟
𝜕𝑃
𝜕𝜃 1244 pressure_mForce_theta

−𝑐3
1

𝑟sin𝜃
𝜕𝑃
𝜕𝜑 1245 pressure_mForce_phi

𝑐2f2Θ00 1246 buoyancy_force_ell0
−𝑐3f1

𝜕
𝜕𝑟

(︁
𝑃00
f1

)︁
1247 pressure_force_ell0_r

𝑐4 [(∇×𝐵) ×𝐵]𝑟 1248 j_cross_b_r
𝑐4 [(∇×𝐵) ×𝐵]𝜃 1249 j_cross_b_theta
𝑐4 [(∇×𝐵) ×𝐵]𝜑 1250 j_cross_b_phi
𝑐4

[︀
(∇×𝐵′) ×𝐵

]︀
𝑟

1251 jp_cross_bm_r
𝑐4

[︀
(∇×𝐵′) ×𝐵

]︀
𝜃

1252 jp_cross_bm_theta
𝑐4

[︀
(∇×𝐵′) ×𝐵

]︀
𝜑

1253 jp_cross_bm_phi
𝑐4

[︀(︀
∇×𝐵

)︀
×𝐵′]︀

𝑟
1254 jm_cross_bp_r

𝑐4
[︀(︀
∇×𝐵

)︀
×𝐵′]︀

𝜃
1255 jm_cross_bp_theta

𝑐4
[︀(︀
∇×𝐵

)︀
×𝐵′]︀

𝜑
1256 jm_cross_bp_phi

𝑐4
[︀(︀
∇×𝐵

)︀
×𝐵

]︀
𝑟

1257 jm_cross_bm_r
𝑐4

[︀(︀
∇×𝐵

)︀
×𝐵

]︀
𝜃

1258 jm_cross_bm_theta
𝑐4

[︀(︀
∇×𝐵

)︀
×𝐵

]︀
𝜑

1259 jm_cross_bm_phi
𝑐4 [(∇×𝐵′) ×𝐵′]𝑟 1260 jp_cross_bp_r
𝑐4 [(∇×𝐵′) ×𝐵′]𝜃 1261 jp_cross_bp_theta
𝑐4 [(∇×𝐵′) ×𝐵′]𝜑 1262 jp_cross_bp_phi
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5.2.11 Thermal Energy Equation

f1f4𝑣 ·∇Θ 1401 rhotv_grad_s
f1f4𝑣

′ ·∇Θ′ 1402 rhotvp_grad_sp
f1f4𝑣

′ ·∇Θ 1403 rhotvp_grad_sm
f1f4𝑣 ·∇Θ 1404 rhotvm_grad_sm
f1f4𝑣 ·∇Θ′ 1405 rhotvm_grad_sp
f1f4𝑣𝑟

𝜕Θ
𝜕𝑟 1406 rhotvr_grad_s

f1f4𝑣
′
𝑟
𝜕Θ′

𝜕𝑟 1407 rhotvpr_grad_sp
f1f4𝑣

′
𝑟
𝜕Θ
𝜕𝑟 1408 rhotvpr_grad_sm

f1f4𝑣𝑟
𝜕Θ
𝜕𝑟 1409 rhotvmr_grad_sm

f1f4𝑣𝑟
𝜕Θ′

𝜕𝑟 1410 rhotvmr_grad_sp
f1f4

𝑣𝜃
𝑟

𝜕Θ
𝜕𝜃 1411 rhotvt_grad_s

f1f4
𝑣′𝜃
𝑟

𝜕Θ′

𝜕𝜃 1412 rhotvpt_grad_sp
f1f4

𝑣′𝜃
𝑟

𝜕Θ
𝜕𝜃 1413 rhotvpt_grad_sm

f1f4
𝑣𝜃
𝑟

𝜕Θ
𝜕𝜃 1414 rhotvmt_grad_sm

f1f4
𝑣𝜃
𝑟

𝜕Θ′

𝜕𝜃 1415 rhotvmt_grad_sp
f1f4

𝑣𝜑
𝑟sin𝜃

𝜕Θ
𝜕𝜑 1416 rhotvp_grad_s

f1f4
𝑣′𝜑

𝑟sin𝜃
𝜕Θ′

𝜕𝜑 1417 rhotvpp_grad_sp

f1f4
𝑣′𝜑

𝑟sin𝜃
𝜕Θ
𝜕𝜑 1418 rhotvpp_grad_sm

f1f4
𝑣𝜑

𝑟sin𝜃
𝜕Θ
𝜕𝜑 1419 rhotvmp_grad_sm

f1f4
𝑣𝜑

𝑟sin𝜃
𝜕Θ′

𝜕𝜑 1420 rhotvmp_grad_sp
−𝑐6∇ · 𝐹 𝑐𝑜𝑛𝑑 1421 s_diff
−𝑐6∇ · 𝐹 ′

𝑐𝑜𝑛𝑑 1422 sp_diff
−𝑐6∇ · 𝐹 𝑐𝑜𝑛𝑑 1423 sm_diff
𝑐6f1f4f5

(︁
𝜕2Θ
𝜕𝑟2

+ 𝜕Θ
𝜕𝑟

[︀
2
𝑟 + d

dr ln {f1f4f5}
]︀)︁

1424 s_diff_r

𝑐6f1f4f5

(︁
𝜕2Θ′

𝜕𝑟2
+ 𝜕Θ′

𝜕𝑟

[︀
2
𝑟 + d

dr ln {f1f4f5}
]︀)︁

1425 sp_diff_r

𝑐6f1f4f5

(︁
𝜕2Θ
𝜕𝑟2

+ 𝜕Θ
𝜕𝑟

[︀
2
𝑟 + d

dr ln {f1f4f5}
]︀)︁

1426 sm_diff_r

𝑐6
f1f4f5
𝑟2

(︁
𝜕2Θ
𝜕𝜃2

+ cot𝜃 𝜕𝑠
𝜕𝜃

)︁
1427 s_diff_theta

𝑐6
f1f4f5
𝑟2

(︁
𝜕2Θ′

𝜕𝜃2
+ cot𝜃 𝜕Θ′

𝜕𝜃

)︁
1428 sp_diff_theta

𝑐6
f1f4f5
𝑟2

(︁
𝜕2Θ
𝜕𝜃2

+ cot𝜃 𝜕Θ
𝜕𝜃

)︁
1429 sm_diff_theta

𝑐6
f1f4f5
𝑟2sin2𝜃

𝜕2Θ
𝜕𝜑2 1430 s_diff_phi

𝑐6
f1f4f5
𝑟2sin2𝜃

𝜕2Θ′

𝜕𝜑2 1431 sp_diff_phi
𝑐6

f1f4f5
𝑟2sin2𝜃

𝜕2Θ
𝜕𝜑2 1432 sm_diff_phi

𝐹𝑄(𝑟) 1433 vol_heat_flux
f6(𝑟) 1434 vol_heating
𝑐5Φ(𝑟, 𝜃, 𝜑) 1435 visc_heating
f7𝑐4 (𝒥 ·𝒥 ) 1436 ohmic_heat
f7𝑐4 (𝒥 ′ ·𝒥 ′) 1437 ohmic_heat_pp
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f7𝑐4

(︀
𝒥 ·𝒥

)︀
1438 ohmic_heat_pm

f7𝑐4
(︀
𝒥 ·𝒥 ′)︀ 1439 ohmic_heat_mm

f1f4𝑣𝑟Θ 1440 rhot_vr_s
f1f4𝑣

′
𝑟Θ

′ 1441 rhot_vrp_sp
f1f4𝑣

′
𝑟Θ 1442 rhot_vrp_sm

f1f4 𝑣𝑟Θ
′ 1443 rhot_vrm_sp

f1f4 𝑣𝑟 Θ 1444 rhot_vrm_sm
f1f4𝑣𝜃Θ 1445 rhot_vt_s
f1f4𝑣

′
𝜃Θ

′ 1446 rhot_vtp_sp
f1f4𝑣

′
𝜃Θ 1447 rhot_vtp_sm

f1f4 𝑣𝜃Θ
′ 1448 rhot_vtm_sp

f1f4 𝑣𝜃 Θ 1449 rhot_vtm_sm
f1f4𝑣𝜑Θ 1450 rhot_vp_s
f1f4𝑣

′
𝜑Θ′ 1451 rhot_vpp_sp

f1f4𝑣
′
𝜑Θ 1452 rhot_vpp_sm

f1f4 𝑣𝜑Θ′ 1453 rhot_vpm_sp
f1f4 𝑣𝜑 Θ 1454 rhot_vpm_sm
𝑐𝑃 f1𝑣𝑟𝑇 1455 enth_flux_r
𝑐𝑃 f1𝑣𝜃𝑇 1456 enth_flux_theta
𝑐𝑃 f1𝑣𝜑𝑇 1457 enth_flux_phi
𝑐𝑃 f1𝑣

′
𝑟𝑇

′ 1458 enth_flux_rpp
𝑐𝑃 f1𝑣

′
𝜃𝑇

′ 1459 enth_flux_thetapp
𝑐𝑃 f1𝑣

′
𝜑𝑇

′ 1460 enth_flux_phipp
𝑐𝑃 f1𝑣

′
𝑟 𝑇 1461 enth_flux_rpm

𝑐𝑃 f1𝑣
′
𝜃 𝑇 1462 enth_flux_thetapm

𝑐𝑃 f1𝑣
′
𝜑 𝑇 1463 enth_flux_phipm

𝑐𝑃 f1 𝑣𝑟 𝑇
′ 1464 enth_flux_rmp

𝑐𝑃 f1 𝑣𝜃 𝑇
′ 1465 enth_flux_thetamp

𝑐𝑃 f1 𝑣𝜑 𝑇
′ 1466 enth_flux_phimp

𝑐𝑃 f1 𝑣𝑟 𝑇 1467 enth_flux_rmm
𝑐𝑃 f1 𝑣𝜃 𝑇 1468 enth_flux_thetamm
𝑐𝑃 f1 𝑣𝜑 𝑇 1469 enth_flux_phimm
−𝑐6f1f4f5

𝜕Θ
𝜕𝑟 1470 cond_flux_r

−𝑐6f1f4f5
1
𝑟
𝜕Θ
𝜕𝜃 1471 cond_flux_theta

−𝑐6f1f4f5
1

𝑟sin𝜃
𝜕Θ
𝜕𝜑 1472 cond_flux_phi

−𝑐6f1f4f5
𝜕Θ′

𝜕𝑟 1473 cond_fluxp_r
−𝑐6f1f4f5

1
𝑟
𝜕Θ′

𝜕𝜃 1474 cond_fluxp_theta
−𝑐6f1f4f5

1
𝑟sin𝜃

𝜕Θ′

𝜕𝜑 1475 cond_fluxp_phi
−𝑐6f1f4f5

𝜕Θ
𝜕𝑟 1476 cond_fluxm_r

−𝑐6f1f4f5
1
𝑟
𝜕Θ
𝜕𝜃 1477 cond_fluxm_theta

−𝑐6f1f4f5
1

𝑟sin𝜃
𝜕Θ
𝜕𝜑 1478 cond_fluxm_phi

f1f4𝑣𝑟f14 1479 ref_advec
f1f4𝑣

′
𝑟f14 1480 ref_advec_p
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f1f4𝑣𝑟f14 1481 ref_advec_m

5.2.12 Induction Equation

[𝐵 ·∇𝑣]𝑟 1601 induct_shear_r
− (∇ · 𝑣)𝐵𝑟 1602 induct_comp_r
− [𝑣 ·∇𝐵]𝑟 1603 induct_advec_r
[∇× (𝑣 ×𝐵)]𝑟 1604 induct_r
−𝑐7 [∇× (f7∇×𝐵)]𝑟 1605 induct_diff_r
[𝐵 ·∇𝑣]𝜃 1606 induct_shear_theta
− (∇ · 𝑣)𝐵𝜃 1607 induct_comp_theta
− [𝑣 ·∇𝐵]𝜃 1608 induct_advec_theta
[∇× (𝑣 ×𝐵)]𝜃 1609 induct_theta
−𝑐7 [∇× (f7∇×𝐵)]𝜃 1610 induct_diff_theta
[𝐵 ·∇𝑣]𝜑 1611 induct_shear_phi
− (∇ · 𝑣)𝐵𝜑 1612 induct_comp_phi
− [𝑣 ·∇𝐵]𝜑 1613 induct_advec_phi
[∇× (𝑣 ×𝐵)]𝜑 1614 induct_phi
−𝑐7 [∇× (f7∇×𝐵)]𝜑 1615 induct_diff_phi[︀
𝐵 ·∇𝑣

]︀
𝑟

1616 induct_shear_vmbm_r
−
(︀
∇ · 𝑣

)︀
𝐵𝑟 1617 induct_comp_vmbm_r

−
[︀
𝑣 ·∇𝐵

]︀
𝑟

1618 induct_advec_vmbm_r[︀
∇×

(︀
𝑣 ×𝐵

)︀]︀
𝑟

1619 induct_vmbm_r
−𝑐7

[︀
∇×

(︀
f7∇×𝐵

)︀]︀
𝑟

1620 induct_diff_bm_r[︀
𝐵 ·∇𝑣

]︀
𝜃

1621 induct_shear_vmbm_theta
−
(︀
∇ · 𝑣

)︀
𝐵𝜃 1622 induct_comp_vmbm_theta

−
[︀
𝑣 ·∇𝐵

]︀
𝜃

1623 induct_advec_vmbm_theta[︀
∇×

(︀
𝑣 ×𝐵

)︀]︀
𝜃

1624 induct_vmbm_theta
−𝑐7

[︀
∇×

(︀
f7∇×𝐵

)︀]︀
𝜃

1625 induct_diff_bm_theta[︀
𝐵 ·∇𝑣

]︀
𝜑

1626 induct_shear_vmbm_phi
−
(︀
∇ · 𝑣

)︀
𝐵𝜑 1627 induct_comp_vmbm_phi

−
[︀
𝑣 ·∇𝐵

]︀
𝜑

1628 induct_advec_vmbm_phi[︀
∇×

(︀
𝑣 ×𝐵

)︀]︀
𝜑

1629 induct_vmbm_phi
−𝑐7

[︀
∇×

(︀
f7∇×𝐵

)︀]︀
𝜑

1630 induct_diff_bm_phi
[𝐵′ ·∇𝑣]𝑟 1631 induct_shear_vmbp_r
−
(︀
∇ · 𝑣

)︀
𝐵′

𝑟 1632 induct_comp_vmbp_r
− [𝑣 ·∇𝐵′]𝑟 1633 induct_advec_vmbp_r
[∇× (𝑣 ×𝐵′)]𝑟 1634 induct_vmbp_r
−𝑐7 [∇× (f7∇×𝐵′)]𝑟 1635 induct_diff_bp_r
[𝐵′ ·∇𝑣]𝜃 1636 induct_shear_vmbp_theta
−
(︀
∇ · 𝑣

)︀
𝐵′

𝜃 1637 induct_comp_vmbp_theta
− [𝑣 ·∇𝐵′]𝜃 1638 induct_advec_vmbp_theta

continues on next page
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[∇× (𝑣 ×𝐵′)]𝜃 1639 induct_vmbp_theta
−𝑐7 [∇× (f7∇×𝐵′)]𝜃 1640 induct_diff_bp_theta
[𝐵′ ·∇𝑣]𝜑 1641 induct_shear_vmbp_phi
−
(︀
∇ · 𝑣

)︀
𝐵′

𝜑 1642 induct_comp_vmbp_phi
− [𝑣 ·∇𝐵′]𝜑 1643 induct_advec_vmbp_phi
[∇× (𝑣 ×𝐵′)]𝜑 1644 induct_vmbp_phi
−𝑐7 [∇× (f7∇×𝐵′)]𝜑 1645 induct_diff_bp_phi[︀
𝐵 ·∇𝑣′]︀

𝑟
1646 induct_shear_vpbm_r

−
(︀
∇ · 𝑣′)︀𝐵𝑟 1647 induct_comp_vpbm_r

−
[︀
𝑣′ ·∇𝐵

]︀
𝑟

1648 induct_advec_vpbm_r[︀
∇×

(︀
𝑣′ ×𝐵

)︀]︀
𝑟

1649 induct_vpbm_r[︀
𝐵 ·∇𝑣′]︀

𝜃
1650 induct_shear_vpbm_theta

−
(︀
∇ · 𝑣′)︀𝐵𝜃 1651 induct_comp_vpbm_theta

−
[︀
𝑣′ ·∇𝐵

]︀
𝜃

1652 induct_advec_vpbm_theta[︀
∇×

(︀
𝑣′ ×𝐵

)︀]︀
𝜃

1653 induct_vpbm_theta[︀
𝐵 ·∇𝑣′]︀

𝜑
1654 induct_shear_vpbm_phi

−
(︀
∇ · 𝑣′)︀𝐵𝜑 1655 induct_comp_vpbm_phi

−
[︀
𝑣′ ·∇𝐵

]︀
𝜑

1656 induct_advec_vpbm_phi[︀
∇×

(︀
𝑣′ ×𝐵

)︀]︀
𝜑

1657 induct_vpbm_phi
[𝐵′ ·∇𝑣′]𝑟 1658 induct_shear_vpbp_r
− (∇ · 𝑣′)𝐵′

𝑟 1659 induct_comp_vpbp_r
− [𝑣′ ·∇𝐵′]𝑟 1660 induct_advec_vpbp_r
[∇× (𝑣′ ×𝐵′)]𝑟 1661 induct_vpbp_r
[𝐵′ ·∇𝑣′]𝜃 1662 induct_shear_vpbp_theta
− (∇ · 𝑣′)𝐵′

𝜃 1663 induct_comp_vpbp_theta
− [𝑣′ ·∇𝐵′]𝜃 1664 induct_advec_vpbp_theta
[∇× (𝑣′ ×𝐵′)]𝜃 1665 induct_vpbp_theta
[𝐵′ ·∇𝑣′]𝜑 1666 induct_shear_vpbp_phi
− (∇ · 𝑣′)𝐵′

𝜑 1667 induct_comp_vpbp_phi
− [𝑣′ ·∇𝐵′]𝜑 1668 induct_advec_vpbp_phi
[∇× (𝑣′ ×𝐵′)]𝜑 1669 induct_vpbp_phi
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5.2.13 Angular Momentum Equation

𝑟 sin𝜃f1 [𝑣′ ·∇𝑣′]𝜑 1801 samom_advec_pp
𝑟 sin𝜃f1 [𝑣 ·∇𝑣]𝜑 1802 samom_advec_mm
−𝑐1f1𝑟sin𝜃 (cos𝜃 𝑣𝜃 + sin𝜃 𝑣𝑟) 1803 samom_coriolis
𝑟 sin𝜃

[︀
∇ ·𝒟

]︀
𝜑

1804 samom_diffusion
𝑟 sin𝜃𝑐4

[︀(︀
∇×𝐵

)︀
×𝐵

]︀
𝜑

1805 samom_lorentz_mm
𝑟 sin𝜃𝑐4 [(∇×𝐵′) ×𝐵′]𝜑 1806 samom_lorentz_pp
f1𝑟sin𝜃𝑣′𝑟𝑣

′
𝜑 1807 famom_fluct_r

f1𝑟sin𝜃𝑣′𝜃𝑣
′
𝜑 1808 famom_fluct_theta

f1𝑟sin𝜃 𝑣𝑟 𝑣𝜑 1809 famom_dr_r
f1𝑟sin𝜃 𝑣𝜃 𝑣𝜑 1810 famom_dr_theta
𝑐1
2 f1𝑟

2sin2𝜃 𝑣𝑟 1811 famom_mean_r
𝑐1
2 f1𝑟

2sin2𝜃 𝑣𝜃 1812 famom_mean_theta
f1𝜈sin𝜃

(︁
𝑣𝜑 − 𝑟

𝜕 𝑣𝜑
𝜕𝑟

)︁
1813 famom_diff_r

f1𝜈
(︁

cos𝜃 𝑣𝜑 − sin𝜃
𝜕 𝑣𝜑
𝜕𝜃

)︁
1814 famom_diff_theta

−𝑟sin𝜃𝑐4𝐵
′
𝑟 𝐵

′
𝜑 1815 famom_maxstr_r

−𝑟sin𝜃𝑐4𝐵
′
𝜃 𝐵

′
𝜑 1816 famom_maxstr_theta

−𝑟sin𝜃𝑐4𝐵𝑟 𝐵𝜑 1817 famom_magtor_r
−𝑟sin𝜃𝑐4𝐵𝜃 𝐵𝜑 1818 famom_magtor_theta
f1𝑟sin𝜃𝑣𝜑 1819 amom_z
f1𝑟(−sin𝜃𝑣𝜑 − cos𝜑𝑣𝜃) 1820 amom_x
f1𝑟(−cos𝜃𝑣𝜑 + cos𝜑𝑣𝜃) 1821 amom_y
f1𝑟sin𝜃𝑣′𝜑 1822 amomp_z
f1𝑟(−sin𝜃𝑣′𝜑 − cos𝜑𝑣′𝜃) 1823 amomp_x
f1𝑟(−cos𝜃𝑣′𝜑 + cos𝜑𝑣′𝜃) 1824 amomp_y
f1𝑟sin𝜃𝑣𝜑 1825 amomm_z
f1𝑟(−sin𝜃𝑣𝜑 − cos𝜑𝑣′𝜃 1826 amomm_x
f1𝑟(−cos𝜃𝑣𝜑 + cos𝜑𝑣𝜃) 1827 amomm_y

5.2.14 Kinetic Energy Equation

−𝑐3f1𝑣 ·∇
(︁
𝑃
f1

)︁
1901 press_work

−𝑐3f1𝑣
′ ·∇

(︁
𝑃 ′

f1

)︁
1902 press_work_pp

−𝑐3f1𝑣 ·∇
(︁
𝑃
f1

)︁
1903 press_work_mm

𝑐2𝑣𝑟f2Θ 1904 buoy_work
𝑐2𝑣

′
𝑟f2Θ

′ 1905 buoy_work_pp
𝑐2𝑣𝑟f2Θ 1906 buoy_work_mm
𝑐5𝑣 · [∇ ·𝒟] 1907 visc_work
𝑐5𝑣

′ · [∇ ·𝒟′] 1908 visc_work_pp
continues on next page
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𝑐5𝑣 ·

[︀
∇ ·𝒟

]︀
1909 visc_work_mm

f1𝑣 · [𝑣 ·∇𝑣] 1910 advec_work
f1𝑣

′ · [𝑣′ ·∇𝑣′] 1911 advec_work_ppp
f1𝑣 · [𝑣′ ·∇𝑣′] 1912 advec_work_mpp
f1𝑣

′ · [𝑣 ·∇𝑣′] 1913 advec_work_pmp
f1𝑣

′ · [𝑣′ ·∇𝑣] 1914 advec_work_ppm
f1𝑣 · [𝑣 ·∇𝑣] 1915 advec_work_mmm
𝑐4𝑣 · [(∇×𝐵) ×𝐵] 1916 mag_work
𝑐4𝑣

′ · [(∇×𝐵′) ×𝐵′] 1918 mag_work_ppp
𝑐4𝑣 · [(∇×𝐵′) ×𝐵′] 1919 mag_work_mpp
𝑐4𝑣

′ ·
[︀(︀
∇×𝐵

)︀
×𝐵′]︀ 1920 mag_work_pmp

𝑐4𝑣
′ ·

[︀
(∇×𝐵′) ×𝐵

]︀
1921 mag_work_ppm

𝑐4𝑣 ·
[︀(︀
∇×𝐵

)︀
×𝐵

]︀
1922 mag_work_mmm

1
2 f1𝑣𝑟 𝑣

2 1923 ke_flux_radial
1
2 f1𝑣𝜃 𝑣

2 1924 ke_flux_theta
1
2 f1𝑣𝜑 𝑣

2 1925 ke_flux_phi
1
2 f1 𝑣𝑟 𝑣

2 1926 mke_mflux_radial
1
2 f1 𝑣𝜃 𝑣

2 1927 mke_mflux_theta
1
2 f1 𝑣𝜑 𝑣

2 1928 mke_mflux_phi
1
2 f1 𝑣𝑟 𝑣

′2 1929 pke_mflux_radial
1
2 f1 𝑣𝜃 𝑣

′2 1930 pke_mflux_theta
1
2 f1 𝑣𝜑 𝑣

′2 1931 pke_mflux_phi
1
2 f1 𝑣

′
𝑟 𝑣

′2 1932 pke_pflux_radial
1
2 f1 𝑣

′
𝜃 𝑣

′2 1933 pke_pflux_theta
1
2 f1 𝑣

′
𝜑 𝑣

′2 1934 pke_pflux_phi
𝑐5 [𝑣 ·𝒟]𝑟 1935 visc_flux_r
𝑐5 [𝑣 ·𝒟]𝜃 1936 visc_flux_theta
𝑐5 [𝑣 ·𝒟]𝜑 1937 visc_flux_phi
𝑐5 [𝑣′ ·𝒟′]𝑟 1938 visc_fluxpp_r
𝑐5 [𝑣′ ·𝒟′]𝜃 1939 visc_fluxpp_theta
𝑐5 [𝑣′ ·𝒟′]𝜑 1940 visc_fluxpp_phi
𝑐5

[︀
𝑣 ·𝒟

]︀
𝑟

1941 visc_fluxmm_r
𝑐5

[︀
𝑣 ·𝒟

]︀
𝜃

1942 visc_fluxmm_theta
𝑐5

[︀
𝑣 ·𝒟

]︀
𝜑

1943 visc_fluxmm_phi
−𝑐3𝑣𝑟𝑃 1944 press_flux_r
−𝑐3𝑣𝜃𝑃 1945 press_flux_theta
−𝑐3𝑣𝜑𝑃 1946 press_flux_phi
−𝑐3𝑣

′
𝑟𝑃

′ 1947 press_fluxpp_r
−𝑐3𝑣

′
𝜃𝑃

′ 1948 press_fluxpp_theta
−𝑐3𝑣

′
𝜑𝑃

′ 1949 press_fluxpp_phi
−𝑐3𝑣𝑟 𝑃 1950 press_fluxmm_r
−𝑐3𝑣𝜃 𝑃 1951 press_fluxmm_theta
−𝑐3𝑣𝜑 𝑃 1952 press_fluxmm_phi

continues on next page
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−− 1953 production_shear_ke
−− 1954 production_shear_pke
−− 1955 production_shear_mke

5.2.15 Magnetic Energy Equation

[(𝑣 ×𝐵 − 𝜂𝒥 ) ×𝐵]𝑟 2001 ecrossb_r
[(𝑣 ×𝐵 − 𝜂𝒥 ) ×𝐵]𝜃 2002 ecrossb_theta
[(𝑣 ×𝐵 − 𝜂𝒥 ) ×𝐵]𝜑 2003 ecrossb_phi
[(𝑣′ ×𝐵′ − 𝜂𝒥 ′) ×𝐵′]𝑟 2004 ecrossb_ppp_r
[(𝑣′ ×𝐵′ − 𝜂𝒥 ′) ×𝐵′]𝜃 2005 ecrossb_ppp_theta
[(𝑣′ ×𝐵′ − 𝜂𝒥 ′) ×𝐵′]𝜑 2006 ecrossb_ppp_phi[︀(︀
𝑣 ×𝐵 − 𝜂𝒥

)︀
×𝐵

]︀
𝑟

2007 ecrossb_mmm_r[︀(︀
𝑣 ×𝐵 − 𝜂𝒥

)︀
×𝐵

]︀
𝜃

2008 ecrossb_mmm_theta[︀(︀
𝑣 ×𝐵 − 𝜂𝒥

)︀
×𝐵

]︀
𝜑

2009 ecrossb_mmm_phi[︀
(𝑣′ ×𝐵′) ×𝐵

]︀
𝑟

2010 ecrossb_ppm_r[︀
(𝑣′ ×𝐵′) ×𝐵

]︀
𝜃

2011 ecrossb_ppm_theta[︀
(𝑣′ ×𝐵′) ×𝐵

]︀
𝜑

2012 ecrossb_ppm_phi[︀(︀
𝑣′ ×𝐵

)︀
×𝐵′]︀

𝑟
2013 ecrossb_pmp_r[︀(︀

𝑣′ ×𝐵
)︀
×𝐵′]︀

𝜃
2014 ecrossb_pmp_theta[︀(︀

𝑣′ ×𝐵
)︀
×𝐵′]︀

𝜑
2015 ecrossb_pmp_phi

[(𝑣 ×𝐵′) ×𝐵′]𝑟 2016 ecrossb_mpp_r
[(𝑣 ×𝐵′) ×𝐵′]𝜃 2017 ecrossb_mpp_theta
[(𝑣 ×𝐵′) ×𝐵′]𝜑 2018 ecrossb_mpp_phi
𝐵 · [∇× (𝑣 ×𝐵)] 2019 induct_work
𝐵′ · [∇× (𝑣′ ×𝐵′)] 2020 induct_work_ppp
𝐵′ ·

[︀
∇×

(︀
𝑣′ ×𝐵

)︀]︀
2021 induct_work_ppm

𝐵′ · [∇× (𝑣 ×𝐵′)] 2022 induct_work_pmp
𝐵 · [∇× (𝑣′ ×𝐵′)] 2023 induct_work_mpp
𝐵 ·

[︀
∇×

(︀
𝑣 ×𝐵

)︀]︀
2024 induct_work_mmm

𝐵 · [𝐵 ·∇𝑣] 2025 ishear_work
−𝐵 · [𝑣 ·∇𝐵] 2026 iadvec_work
−𝐵 · (∇ · 𝑣)𝐵 2027 icomp_work
𝐵′ ·

[︀
𝐵 ·∇𝑣′]︀ 2028 ishear_work_pmp

−𝐵′ · [𝑣 ·∇𝐵′] 2029 iadvec_work_pmp
−𝐵′ · (∇ · 𝑣)𝐵′ 2030 icomp_work_pmp
𝐵′ · [𝐵′ ·∇𝑣] 2031 ishear_work_ppm
−𝐵′ ·

[︀
𝑣′ ·∇𝐵

]︀
2032 iadvec_work_ppm

−𝐵′ · (∇ · 𝑣′)𝐵 2033 icomp_work_ppm
𝐵 ·

[︀
𝐵 ·∇𝑣

]︀
2034 ishear_work_mmm

−𝐵 ·
[︀
𝑣 ·∇𝐵

]︀
2035 iadvec_work_mmm

−𝐵 · (∇ · 𝑣)𝐵 2036 icomp_work_mmm
continues on next page
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𝐵 · [𝐵′ ·∇𝑣′] 2037 ishear_work_mpp
−𝐵 · [𝑣′ ·∇𝐵′] 2038 iadvec_work_mpp
−𝐵 · (∇ · 𝑣′)𝐵′ 2039 icomp_work_mpp
𝐵′ · [𝐵′ ·∇𝑣′] 2040 ishear_work_ppp
−𝐵′ · [𝑣′ ·∇𝐵′] 2041 iadvec_work_ppp
−𝐵′ · (∇ · 𝑣′)𝐵′ 2042 icomp_work_ppp
−𝑐7𝐵 · [∇× (f7∇×𝐵)] 2043 idiff_work
−𝑐7𝐵

′ · [∇× (f7∇×𝐵′)] 2044 idiff_work_pp
−𝑐7𝐵 ·

[︀
∇×

(︀
f7∇×𝐵

)︀]︀
2045 idiff_work_mm

5.2.16 Turbulent Kinetic Energy Generation

f2Θ
′𝑣′𝑟 2701 production_buoyant_pKE

−f1𝑣
′
𝑖𝑣

′
𝑗𝑒𝑖𝑗 2702 production_shear2_pKE

2f1f3

[︁
𝑒′𝑖𝑗𝑒

′
𝑖𝑗 − (∇ · 𝑣′)2 /3

]︁
2703 dissipation_viscous_pKE

−∇ · (𝑃 ′𝑣′) 2704 transport_pressure_pKE
∇ · (𝒟′ · 𝑣′) 2705 transport_viscous_pKE
−∇ ·

(︁
1
2 f1𝑣

′2𝑣′
)︁

2706 transport_turbadvect_pKE

−∇ ·
(︁
1
2 f1𝑣

′2𝑣
)︁

2707 transport_meanadvect_pKE
𝑃 ′𝑣′𝑟 2708 rflux_pressure_pKE
− [𝒟′ · 𝑣′]𝑟 2709 rflux_viscous_pKE
1
2 f1𝑣

′2𝑣′𝑟 2710 rflux_turbadvect_pKE
1
2 f1𝑣

′2𝑣𝑟 2711 rflux_meanadvect_pKE
𝑃 ′𝑣′𝜃 2712 thetaflux_pressure_pKE
− [𝒟′ · 𝑣′]𝜃 2713 thetaflux_viscous_pKE
1
2 f1𝑣

′2𝑣′𝜃 2714 thetaflux_turbadvect_pKE
1
2 f1𝑣

′2𝑣𝜃 2715 thetaflux_meanadvect_pKE
𝑃 ′𝑣′𝜑 2716 phiflux_pressure_pKE
− [𝒟′ · 𝑣′]𝜑 2717 phiflux_viscous_pKE
1
2 f1𝑣

′2𝑣′𝜑 2718 phiflux_turbadvect_pKE
1
2 f1𝑣

′2𝑣𝜑 2719 phiflux_meanadvect_pKE
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5.2.17 Axial Field

𝑣𝑧 2801 v_z
𝑣𝑧 2802 vm_z
𝑣′𝑧 2803 vp_z
𝜕𝑣𝑧
𝜕𝑧 2804 dvzdz
𝜕𝑣𝑧
𝜕𝑧 2805 dvzdz_m
𝜕𝑣𝑧
𝜕𝑧

′ 2806 dvzdz_p
𝜔𝑧 2807 vort_z
𝜔𝑧 2808 vortm_z
𝜔′
𝑧 2809 vortp_z

𝑣𝑧𝜔𝑧 2810 kin_helicity_z
𝑣𝑧𝜔𝑧 2811 kin_helicity_z_mm
𝑣′𝑧𝜔

′
𝑧 2812 kin_helicity_z_pp

𝑣𝑧𝜔
′
𝑧 2813 kin_helicity_z_mp

𝑣′𝑧𝜔𝑧 2814 kin_helicity_z_pm
𝐵𝑧 2815 B_z
𝐵𝑧 2816 Bm_z
𝐵′

𝑧 2817 Bp_z
𝒥𝑧 2818 J_z
𝒥𝑧 2819 Jm_z
𝒥 ′
𝑧 2820 Jp_z

𝜕Θ
𝜕𝑧 2821 dTvardz
𝜕Θ
𝜕𝑧 2822 dTvardz_m
𝜕Θ
𝜕𝑧

′ 2823 dTvardz_p
𝜕𝑃
𝜕𝑧 2824 dPdz
𝜕𝑃
𝜕𝑧 2825 dPdz_m
𝜕𝑃 ′

𝜕𝑧 2826 dPdz_p

Note that we use the shorthand 𝒥 to denote the curl of 𝐵, namely 𝒥 ≡ ∇×𝐵.
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SIX

GETTING HELP

For questions on the source code of Rayleigh, portability, installation, new or existing features, etc., use the
Rayleigh forum. This is also the place where we announce our regular user calls. For a more direct contact
you can also join our Slack channel.
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https://community.geodynamics.org/c/rayleigh/5
https://join.slack.com/t/rayleighworkspace/shared_invite/zt-1fy7the9g-I80zezN~0bf64mFp2vKRiw
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